AC 14/7/2016, Item No. 4.64 UNIVERSITY OF MUMBAI

Bachelor of Engineering

<u>First Year Engineering (Semester I & II), Revised course (REV-</u> 2016)from Academic Year 2061 -17,(Common for All Branches of Engineering)

(As per Choice Based Credit and Grading System with effect from the A. Y. 2016 - 17)

1

<u>First Year Engineering (Semester I & II), Revised course from Academic Year 2016 -17,</u> (REV- 2016) (Common for all Branches of Engineering)

Sub. Code	Subject Name	Examination Scheme								
		Theory	Marks		Cints-	Term	Pract	Oral	Total	
		Interna	Assessm	ent	End	Work	1	199		
		Test 1	Test 2	Average of Test 1 & Test 2	sem. exam					
FEC101	Applied Mathematics-I	20	20	20	80	25	-		125	
FEC102	Applied Physics-I	15	15	15	60	25	1	-	100	
FEC103	Applied Chemistry –I	15	15	15	60	25	-	-	100	
FEC104	Engineering Mechanics	20	20	20	80	25	1	25	150	
FEC105	Basic Electrical Engineering	20	20	20	80	25	-	25	150	
FEC106	Environmental studies	15	15	15	60		-	-	75	
FEL101	Basic Workshop Practice-I	-	-	-	-	50	-	-	50	
				105	420	175		50	750	

<u>Scheme for FE - Semester -I</u>

Sub Code	Subject Name	Teach	ing Sche	me	Credits Assigned			
		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
FEC101	Applied Mathematics-I	04	-	01	04		01	05
FEC102	Applied Physics-I	03	01	-	03	0.5	3.5	3.5
FEC103	Applied Chemistry -I	03	01	-	03	0.5	3-	3.5
FEC104	Engineering Mechanics	05	02	-	05	01	-	06
FEC105	Basic Electrical Engineering	04	02		04	01		05
FEC106	Environmental studies	02	-	-	02	-	-	02
FEL101	Basic Workshop Practice-I	-	04	-	-	02	-	02
		21	10	01	21	05	01	27

<u>First Year Engineering (Semester I & II), Revised course from Academic Year 2016 -17,</u> (REV- 2016) (Common for all Branches of Engineering)

Scheme for FE - Semester - II

ub.	Subject Name	Examination Scheme								
Code		Theory r	marks			Term	Pract.	Oral	Total	
		Internal	Assessm	nent	End	Work	1 - 1	-		
		Test 1	Test 2	Average of Test 1 & Test 2	sem. exam					
FEC201	Applied Mathematics-II	20	20	20	80	25	-	-	125	
FEC202	Applied Physics-II	15	15	15	60	25	-	-	100	
FEC203	Applied Chemistry -II	15	15	15	60	25	-	-	100	
FEC204	Engineering Drawing	15	15	15	60	25	50	-	150	
FEC205	Structured Programming Approach	20	20	20	80	25	25	-	150	
FEC206	Communication Skills	10	10	10	40	25	-	-	75	
FEL201	Basic Workshop Practice-II	-	-		•	50	-	-	50	
				95	380	200	75		750	

Subject	Subject Name	Teaching	, Scheme		Credits A	Assigned			
Code		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
FEC201	Applied Mathematics-II	04	-	01	04		01	05	
FEC202	Applied Physics-II	03	01	-	03	0.5	-	3.5	
FEC203	Applied Chemistry -II	03	01	-	03	0.5	-	3.5	
FEC204	Engineering Drawing	03	04	- 20	03	02	-	05	
FEC205	Structured Programming Approach	04	02	-	04	01	-	05	
FEC206	Communication Skills	02	02	-	02	01	-	03	
FEL201	Basic Workshop Practice -II	-	04	-	-	02	-	02	
		19	14	01	19	07	01	27	

Aniversity of Mumbai

No. UG/ 65 of 2019-20

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges, Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/131 of 2016-17 dated 9th November, 2016 relating to the revised syllabus as per (CBCS) for Bachelor of Engineering (First Year Engineering (Sem. I to II).

They are hereby informed that the recommendations made by the faculty members of Engineering at its meeting held on 8th May, 2019 have been accepted by the Academic Council at its meeting held on 26th July, 2019 vide item No. 4.40 and that in accordance therewith, the Revised Syllabus and Scheme for 2019 of First Year Engineering (Sem. I & II) as per AICTE model curriculum from the academic year 2019-20. (The same is available on the University's website www.mu.ac.in).

abom 2

(Dr. Ajay Deshmukh) REGISTRAR

AS por AAVIelt

dented 20th Aug. 201

MUMBAI - 400 032 14th August, 2019

To

The Principals of the affiliated Colleges, and Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C/4.40/26/07/2019

No. UG/65 -A of 2019-20

MUMBAI-400 032

14 August, 2019

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Director, Board of Examinations and Evaluation,
- 3) The Director, Board of Students Development,
- 5) The Co-ordinator, University Computerization Centre,

4

About

(Dr. Ajay Deshmukh) REGISTRAR

UNIVERSITY OF MUMBAI

Bachelor of Engineering

First Year Engineering (Semester I & II), Revised course

(REV- 2019'C' Scheme) from Academic Year 2019 - 20

(Common for All Branches of Engineering)

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019–2020)

University of Mumbai, First Year Engineering, (Common for all Branches of Engineering) REV2019 'C' Scheme 0/61

Program Structure for First Year Engineering Semester I & II UNIVERSITY OF MUMBAI (With Effect from 2019-2020)

Semester I

Course Code	Course Name	Tea (Co	ching Sche ontact Hou	eme rs)		Credits Assigned		
		Theory	Pract.	Tut.	Theory	Pract	Tut	Tetal
FEC101	Engineering Mathematics-I	3		1*	3	Tract.	1 1	Total
FEC102	Engineering Physics-I	2			2		1	4
FEC103	Engineering Chemistry-I	2			2			2
FEC104	Engineering Mechanics	3			3		h the starting	2
FEC105	Basic Electrical Engineering	3			3			3
FEL101	Engineering Physics-I		1			0.5		0.5
FEL102	Engineering Chemistry-I		1			0.5		0.5
FEL103	Engineering Mechanics		2	and the second		0.5		0.5
FEL104	Basic Electrical Engineering		2	1.9		1		1
FEL105	Basic Workshop practice-I		2			1		1
Total		13	08	01	13	04	01	1
Real Providence				Exa	mination S	cheme		
				The second				

Course				Theory	y	1.1.1		terres	
Code	Course Name	Intern	al Assess	ment	End	Exam	Term	Pract.	S Offait
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	/oral	Total
FEC101	Engineering Mathematics-I	20	20	20	80	3	25		125
FEC102	Engineering Physics-I	15	15	15	60	2			75
FEC103	Engineering Chemistry-I	15	15	15	60	2			75
FEC104	Engineering Mechanics	20	20	20	80	3			100
FEC105	Basic Electrical Engineering	20	20	20	80	3			100
FEL101	Engineering Physics-I						25		25
FEL102	Engineering Chemistry-I						25		25
FEL103	Engineering Mechanics						25	25	50
FEL104	Basic Electrical Engineering						25	25	50
FEL105	Basic Workshop practice-I						50	23	50
	Total	-		90	360		175	50	675

* Shall be conducted batch-wise

Semester II

Course Code	Course Name	Te: (C	aching So ontact H	cheme ours)		C	edits As	signed	
		Theory	Pract	. Tı	ut. TI	ieory P	ract	Tut	Total
FEC201	Engineering Mathematics-II	3		1	*	3		1	4
FEC202	Engineering Physics-II	2		-	-	2			7
FEC203	Engineering Chemistry-II	2		-		2			2
FEC204	Engineering Graphics	2			-	2			2
FEC205	C programming	2			_	2			2
FEC206	Professional Communication and Ethics- I	2	-	-	-	2			2
FEL201	Engineering Physics-II		1	-	-	(0.5		0.5
FEL202	Engineering Chemistry-II		1	-	-	(0.5		0.5
FEL203	Engineering Graphics		4	-	-		2		2
FEL204	C programming		2	-	-		1		1
FEL205	Professional Communication and Ethics- I		2	-	-		1		1
FEL206	Basic Workshop practice-II		2	-	-		1		1
	Total	13	12	0	1	13	06	01	20
					Examina	tion Schem	ie		
				Theory	y				
Course	Course Name	Intern	Internal Assessment End Exam. Term Pr		ad Exam Term		Pract.		
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	/oral	Total
FEC201	Engineering Mathematics-II	20	20	20	80	3	25		125
FEC202	Engineering Physics-II	15	15	15	60	2			75
FEC203	Engineering Chemistry-II	15	15	15	60	2		-	75
FEC204	Engineering Graphics	15	15	15	60	3			75
FEC205	6 C programming	15	15	15	60	2			75
FEC206	Professional Communication and Ethics- I	10	10	10	40	2			50
FEL20	1 Engineering Physics-II						25		25
FEL202	2 Engineering Chemistry-II	-			2.000		25		25
FEL20	3 Engineering Graphics						25	50	75
FEL204	4 C programming						25	25	50
FEL20	5 Professional Communication and Ethics- I	-					25		25
FEL20	6 Basic Workshop practice-II		-				50		50
	Total			90	360		200	75	725

* Shall be conducted batch-wise

UNIVERSITY OF MUMBAI Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under FACULTY OF TECHNOLOGY **Instrumentation Engineering** Final Year with Effect from AY 2019-20 As per Choice Based Credit and Grading System with effect from the AY 2016–17

Program Structure for BE Instrumentation Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VII

Course Code	Course Name	T(eaching Sch Contact Ho	neme urs)		Credits A	Assigned	
Code		Theo ry	Practica l	Tutoria l	Theory	Practical	Tutoria l	Total
ISC701	Industrial Process Control	4	-	-	4	-	-	4
ISC702	Biomedical Instrumentation	4	-	-	4	-	-	4
ISC703	Industrial Automation	4	-	-	4	-	-	4
ISDLO70 3X	Department Level Optional Course III	4	-	-	4	-	-	4
ILO701X	Institute Level Optional Course I	3	-	-	3	-	-	3
ISL701	Industrial Process Control – Lab Practice	-	2	-	-	1	-	1
ISL702	Biomedical Instrumentation – Lab Practice	-	2	-	-	1	-	1
ISL703	Industrial Automation – Lab Practice	-	2	-	-	1	-	1
ISL704	Department Level Optional Course III – Lab Practice	-	2	-	-	1	-	1
ISL705	Project I	-	6	-	-	3	-	3
	Total	19	14	-	19	07	-	26

Examination Scheme for Semester VII

			Examination Scheme								
		The	ory	-	0.1						
Course	Course Name	End Sem Exam	Internal Assessment	Term Work	Oral	Oral					
Code		(ESE)	(IA)				Total				
		Max	Max	Max	Max	Max	IVIAI KS				
		Marks	Marks	Marks	Marks	Marks					
ISC701	Industrial Process Control	80	20	-	-	_	100				
ISC702	Biomedical Instrumentation	80	20	-	-	-	100				
ISC703	Industrial Automation	80	20	-	-	-	100				
ISDLO7 03X	Department Level Optional Course III	80	20	-	-	-	100				
ILO701 X	Institute Level Optional Course I	80	20	-	-	-	100				
ISL701	Industrial Process Control – Lab Practice	-	-	25	25	-	50				
ISL702	Biomedical Instrumentation – Lab Practice	-	-	25	25	-	50				
ISL703	Industrial Automation – Lab Practice	-	-	25	25	-	50				
ISL704	Department Level Optional Course III – Lab Practice	-	-	25	25	-	50				
ISL705	Project I	-	-	50	50	-	100				
	Total	400	100	150	150	-	800				

Subject Code	Subject Name	Tea	ching Sch	eme		Credits A	Assigned	
	Industrial	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISC701	Process Control	4	-	-	4	-	-	4

Subject Code				I	Examinatio	n scheme				
	Subject Name		Theory	Marks (100)		Pract.			
	Subject Mame	Intern	al Assessi	ment (20)	End Sem	Term work	and	Oral	Total	
		Test1	Test2	Avg.	Exam		and Oral			
ISC701	Industrial Process Control	20	20	20	80	-	-	-	100	

Subject Code	Subject Name	credits
ISC701	Industrial Process Control	4
Course objectives	1. To impart the knowledge of different industrial unit operations.	
	2. To make the students capable to design and develop instrumentation and control schemes for industrial process	ses.
	3. To give them overview of various process industries, hazardous areas and their classification.	
Course Outcomes	The students will be able to:	
	1. Explain working and control of various heat transfer unit operations	
	2. Explain working and control of various heat and mass tra unit operations	nsfer
	3. Explain the miscellaneous process equipment and their co	ontrol
	4. Describe the processes of various continuous process industries and instrumentation involved in them.	
	5. Describe the processes of various batch process industri instrumentation involved in them.	ries and
	6. Classify hazardous areas in the industry.	

Prerequisite: Temperature, flow, pressure sensors, fundamentals of process instrumentation and control, control schemes like feedback, feedforward, cascade, split range, selective etc., basics of unit operations.

Module	Content	Hrs	CO Mapping
1	 Control System for Heat transfer unit operations: Introduction to unit operations and processes, concept of heat transfers and energy balance, heat transfer coefficient. Heat exchanger control: classification as per fluid flow arrangement and construction, feedback, feed-forward, bypass control schemes, fouling in heat exchangers. Boiler control: Types, working and operation of boilers, Terms related-Shrink and swell effect and excess oxygen, boiler efficiency, boiler performance terminology. Boiler controls- Drum level control- Single, two and three elements, and Combustion Control-Type 1, 2, 3 and 4, steam temperature control, boiler pressure control, furnace draft control, Burner Management System. Evaporator control: Evaporator terminologies, Types of Evaporator, mathematical model for evaporator, control systems for Evaporator – feedback, cascade, feed forward and selective control. Furnace control: Start- up heaters, fired re-boilers, process and safety controls. 	13	CO1
2	 Control System for Heat and mass transfer unit operations: Distillation column: Basic principle, Distillation equipment and its accessories. Batch and continuous distillation, Binary product distillation, multi-product distillation, side-draw product distillation column. Distillation column control strategies- Top and bottom product composition controls, Using chromatograph, Pressure controls, Vacuum distillation, Vapors recompression and pressure control, Feed controls- Column feed controls and Feed temperature control, economizer. Dryer control: Process of drying, types of dryer- Tray, Vacuum dryer, fluidized bed, Double drum dryer, rotary, turbo and spray, and their control strategies. Crystallizers: Process of crystallization, Super-saturation methods, types of crystallizer, control of evaporating crystallizer, cooling crystallizers, vacuum crystallizers. Reactor control: Reactor characteristics, runaway reaction, various schemes of temperature control of reactors. 	12	CO2
3	Miscellaneous process equipment: Compressor- Classification, Phenomenon of Surge for centrifugal compressors, Methods of surge control for compressors. Gas turbine- Introduction, gas turbine layouts, closed cycle gas turbine, Engine controls.	05	CO3
4	Continuous Process Industries: Refinery Industry: Process flow diagram, separation, Treatment-Hydro- desulphurization unit, conversion methods- Fluid Catalytic Cracking, blending, sensors and control schemes.	07	CO4

	Iron and steel Industry: Process flow diagram, Sensors and Control		
	schemes.		
	Batch Process Industries:		
5	Food processing: Milk pasteurization.	07	CO5
5	Pharmaceutical industries- Penicillin-G production, sensors and control	07	
	schemes.		
	Safety in Instrumentation control systems:		
6	Area and material classification as per IEC and NEC standard, techniques	0.4	COC
	used to reduce explosion hazards, intrinsic safety, and installation of	04	006
	intrinsically safe systems.		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of

4 to 5 marks will be asked.

- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

Text Books:

- 1. W. L. McCabe and Julian Smith, "Unit operation and chemical engineering", Tata McGraw Hill, Sixth edition, 2001.
- 2. Bela G. Liptak, "Instrument engineers handbook Process control", Chilton book company, third edition, 1995.
- 3. Bela G. Liptak, "Instrumentation in the processing industries", Chilton book company-first edition, 1973.

- 1. Douglas M. Considine, "Process industrial instruments and controls handbook", McGraw Hill- 4th edition, 1993.
- 2. George T. Austin, "Shreve's chemical process industries", Mc-GrawHill- fifth edition, 1984.
- 3. George Stephenopoulos, "Chemical process control", PHI-1999.
- 4. David Lindsey, "Power Plant control and instrumentation control of boilers HRSG", Institution of Engineering and Technology,
- 5. G.F. Gilman "Boiler Control Systems Engineering", ISA Publication, 2005,
- 6. A.M.Y.Razak, Industrial gas turbines Performance and operability", CRC Press Woodhead

Publishing Limited and CRC Press LLC, 2007.

Sub code	Subject Name	Teaching Scheme (Hrs)			Credits Assigned			
	Subject Mame	Theory	Pract	Tut.	Theory	Pract.	Tut.	Total
ISC702	Biomedical Instrumentation	4	-	-	4	-	-	4

Sub code		Examination Scheme								
	Subject Name	Theory (out of 100)					Pract. and		Total	
		Internal Assessment (out of 20)			End Term sem Work			Ora l		
		Test 1	Test 2	Avg	Exam		orai			
ISC702	Biomedical Instrumentation	20	20	20	80	-	-	-	100	

Subject Code	Subject Name	Credits
ISC702	Biomedical Instrumentation	4
Course Objectives	To make students understand the Identification, classification, and principle of various Biomedical Instruments used for Bio measurement To make students understand the application of the various biomedical in	l working popotential
	in diagnosis, therapeutic and imaging fields.	
Course Outcomes	The students will be able	
	1. To identify various Bio-potential with their specifications and perform measurements.	n their
	2. To discuss various Physiological systems and to identify their parame related measurements.	eters and
	3. To explain the principle and working of various cardiovascular param their measurement techniques with applications.	eters and
	4. To relate between the different life support instruments and to describ applications.	e their
	5. To distinguish between the various medical imaging techniques based principles and concepts involved in them.	l on the
	6. To describe the significance of electrical safety in biomedical measure	ement.

Module	Topics	Hrs.	CO Mapping
	Bio-Potentials and their Measurement:		
	Structure of Cell, Origin of Bio-potential, electrical activity of cell and		
	its characteristics and specifications. Measurement of RMP and AP.		
	Electrode-Electrolyte interface and types of bio-potential electrodes.	06	CO1
1		00	COI
	Physiological Systems and Related Massurament:		
	Respiratory systems Physiology of respiration and		
	measurements of respiratory related parameters		
	 Nervous system- Nerve cell neuronal communication nerve- 		
2	muscle physiology, CNS, PNS, Generation of EEG and study	12	CO2
	of its characteristics. Normal and abnormal EEG, evoked		
	potential and epilepsy.		
	 Muscular system- Generation of EMG signal, specification 		
	and measurement.		
	• Cardiovascular system- Structure of Heart, Electrical and		
	Mechanical activity of Heart, ECG measurements and Cardiac		
	arrhythmias.		
	• Design of ECG amplifier.		
	Cardiovascular Measurement:		
	Blood Pressure- Direct and Indirect types.		
	Blood Flow- Electromagnetic and Ultrasonic types.		
3	• Blood Volume- Types of Plethysmography. (Impedance,	08	CO3
5	Capacitive and Photoelectric)	00	005
	• Cardiac Output- Flicks method, Dye-dilution and Thermo-		
	dilution type.		
	Heart sound measurement.		
	Life support Instruments:		
	• Patient monitoring system - Bedside monitors, Central nurse		
	station		
4	• Pacemaker- Types of Pacemaker, mode of pacing and its	10	CO4
	• Defibrillator AC and DC Defibrillators and their application		
	 Heart Lung machine and its application during surgery 		
	 Hemodialysis system and the precautions to be taken during 		
	dialysis.		
	• Ventilator system and its important parameters for monitoring		
	Imaging Techniques: *		
	• X-Ray machine and its application. CT Scan- CT Number.		
5	Block Diagram, scanning system and application.		
	• Ultrasound Imaging- Modes of scanning and their application.	10	COS
	• MRI- Concepts and image generation, block diagram and its		005
	application.		
	• Introduction to Functional imaging.		
	Significance of Electrical Safety.		
6	Physiological effects of electrical current Shock Hazards from electrical	02	COG
U	equipment and methods of accident prevention	02	200
	equipment and methods of accident prevention.		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.

3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.

4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- Leslie Cromwell, "Biomedical Instrumentation and Measurements", 2nd Edition, Pearson Education, 1980.
- 2) John G. Webster, "Medical Instrumentation", John Wiley and Sons, 4th edition, 2010.
- 3) R. S. Khandpur, "Biomedical Instrumentation", TMH, 2004

- 1) Richard Aston, "Principles of Biomedical Instrumentation and Instruments", PH, 1991.
- Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", PHI/Pearson Education, 4th edition, 2001.
- 3) John E Hall, Gyton's Medical Physiology, 12th edition, 2011
- 4) L. E. Baker L. A. Geddes, "Principles of Applied Biomedical Instrumentation", John Wiley and Sons, 3rd Edition, 1991.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISC703	Industrial	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Automation	4	-	-	4		-	4

Sub	Subject	Examination scheme								
Code	Name	Theory	Theory (100)				Pract.	Oral	Total	
		Internal Assessment(20)			End	work	and			
					sem		Oral			
		Test1	Test	Avg.	Exam					
			2	_						
ISC703	Industrial	20	20	20	80	-	_	-	100	
	Automation									

Subject Code	Subject Name	credits						
ISC703	Industrial Automation	4						
Course objective	• To impart knowledge about the fundamentals of auton various automation systems used in industry.	nation and						
	• To impart the knowledge about the architecture, wo applications of PLC, DCS and SCADA	Γο impart the knowledge about the architecture, working and applications of PLC, DCS and SCADA						
	• To make the students understand the requirements Instrumented System (SIS).	To make the students understand the requirements of Safety Instrumented System (SIS).						
Course Outcome	The students will be able to							
	1. Describe automation, need, importance and applied	cations in						
	industry.							
	2. Identify components of PLC, and develop PLC lad instructions of PLC and design PLC based appli proper selection and sizing criteria	Identify components of PLC, and develop PLC ladder using instructions of PLC and design PLC based application by proper selection and sizing criteria						
	3. Explain evolution and architecture of DCS, hierarchic	cal control						
	in DCS, programming DCS through Function Block	Diagram						
	(FBD) method.							
	4. Describe SCADA architecture, communication in SC	ADA and						
	develop any application based on SCADA along	with GUI						
	using SCADA software.							
	5. Explain database and alarm management system							
	6. Recognize the need of SIS and describe risk reduction	methods.						

Prerequisite: Knowledge of Digital Electronics, Process Instrumentation and Control.

Module	Content	Hrs.	CO
			Mapping
1	Automation Fundamentals	04	CO1
	Automation, Need for automation and its importance, Types of		
	automation, Automation applications, Expectations of automation.		
	Process and factory automation.		
	lypes of plant and control – categories in industry, open loop and closed loop control functions continuous processes discrete		
	processes and mixed processes		
	Automation hierarchy – large control system hierarchy data quantity		
	& quality and hierarchical control		
	Control system architecture – evolution and current trends		
	comparison of different architectures.		
2	Programmable Logic Controller	14	CO2
	Hardware		
	Evolution of PLC, Definition, functions of PLC, Advantages,		
	Architecture, working of PLC, Scan time, Types & Specifications.		
	Safety PLC		
	DI-DO-AI-AO examples and ratings, I/O modules, local and remote		
	I/O expansion, special purpose modules, wiring diagrams of		
	different I/O modules, communication modules, Memory &		
	addressing- memory organization (system memory and application		
	memory), I/O addressing, hardware to software interface.		
	Software Development of Belay Logic Lodder Diagram introduction to DLC		
	Programming programming devices IFC standard PLC		
	programming languages ID programming-basic ID instructions		
	PLC Timers and Counters: Types and examples data transfer &		
	program control instructions, advanced PLC instructions, PID		
	Control using PLC.		
	Case study:		
	PLC selection and configuration for any one process applications.		
3	Distributed Control System (DCS)	12	CO3
	Introduction to DCS. Evolution of DCS, DCS flow sheet symbols,		
	architecture of DCS. Controller, Input and output modules,		
	Communication module, data highway, local I/O bus, Workstations,		
	Specifications of DCS. Introduction of Hierarchical control of		
	memory: Task fisting, Higher and Lower computer level task.		
	computer functions Control techniques Supervisory Control		
	Algorithm DCS & Supervisory computer displays advanced		
	control Strategies computer interface with DCS		
	DCS System integration with PLCs computer: HMI. Man machine		
	interface sequencing. Supervisory control, and integration with PLC.		
	personal computers and direct I/O, serial linkages, network linkages.		
	link between networks.		
	Introduction to DCS Programming, Function Block Diagram method		
	for DCS programming.		

4	Supervisory Control and Data Acquisition (SCADA)	10	CO4
	SCADA introduction, brief history of SCADA, elements of		
	SCADA.		
	Features of SCADA, MTU- functions of MTU, RTU- Functions of		
	RTU, Protocol Detail, Specifications of SCADA		
	SCADA as a real time system Communications in SCADA- types &		
	methods used, components, Protocol structure and Mediums used		
	for communications.		
	SCADA Development for any one typical application.		
	Programming for GUI development using SCADA software.		
5	Database and Alarm Management, MES, ERP	04	CO5
	Database management, Philosophies of Alarm Management, Alarm		
	reporting, types of alarms generated and acceptance of alarms.		
	Manufacturing Execution System, Enterprise Resource Planning,		
	Integration with enterprise system.		
6	Safety Instrumented System (SIS)	04	CO6
	Need for safety instrumentation- risk and risk reduction methods,		
	hazards analysis. Process control systems and SIS.		
	Safety Integrity Levels (SIL) and availability. Introduction to the		
	international functional safety standard IEC 61508.		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Samuel M. Herb, "Understanding Distributed Processor Systems for Control", ISA Publication, 1999.
- 2. Thomas Hughes, "Programmable Logic Controller", ISA Publication, 2001.
- 3. Stuart A. Boyer, "SCADA supervisory control and data acquisition", ISA Publication, 2010.
- 4. Gruhn and Cheddie, "Safety Shutdown Systems" ISA, 1998,

- 1. Poppovik Bhatkar, "Distributed Computer Control for Industrial Automation", Dekkar Publication, 1990.
- 2. S.K. Singh, "Computer Aided Process Control", Prentice Hall of India, 2004.
- 3. Krishna Kant, "Computer Based Process Control", Prentice Hall of India
- 4. N.E. Battikha, "The Management of Control System: Justification and Technical Auditing", ISA.

- 5. Gary Dunning, "Introduction to Programmable Logic controller", Thomas Learning, edition, 2001.
- 6. John. W. Webb, Ronald A Reis, "Programmable Logic Controllers Principles and Applications", 3rd edition, Prentice Hall Inc., New Jersey, 1995.
- 7. Bela G. Liptak "Instrument engineer's handbook- Process control" Chilton book company-3rd edition.
- 8. D.J. Smith & K.G.L. Simpson, "Functional Safety: A Straightforward Guide to IEC61508 and Related Standards", -Butterworth-Heinemann Publications.

Subject code	Subject Name	Teaching scheme Credit assigned						
ISDLO7031	Imaga Propaging	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Image Processing	4	-	-	4	-	-	4

		Examination scheme									
	Subject		Theory ((out of 1	100)		Dreat				
Sub Code	Name	Internal Assessment(20)		20)	End Sem	Term work	and	Oral	Total		
		Test1	Test2	Avg.	Exam		Orai	ral			
ISDLO7031	Image Processing	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	Credits						
ISDLO7031	Image Processing	4						
	1. To explain basic principles of Image processing.							
	2. To apply time and frequency domain transformation method on 2	D Images						
	3. To study different Image enhancement techniques in spatial and	frequency						
	domain.							
Course Objectives	4. To study Image restoration techniques to reduce the noise ar	nd recover						
	original Image.							
	5. To study Lossy and lossless Image compression by different methods.							
	6. To study Image morphology and segmentation techniques to represent							
	images into more meaningful and easier to analyze.							
	Students will be able to -							
	1. Describe general terminology of Image processing.							
	2. Examine Images and their analysis by various transformation tech	nniques.						
	3. Apply basic Image enhancement operations on Images.							
Course Outcomes	4. Evaluate mathematical tools such as Image morphology a	nd Image						
	segmentation to extract various Image components.							
	5. Discuss Image compression methods							
	6. Discuss Image degradation and restoration model.							

Prerequisite: Knowledge of Fundamentals of Engineering Mathematics, Basic Operation with Matrices, Signals and Systems and Digital Signal Processing.

Module	Contents	Hrs	CO
			mapping
1	Introduction to Image processing: -Concept of Digital Image,	08	CO1
	Fundamental steps in Image processing, Components of Image		
	processing systems, Elements of visual perception, Image formation		
	model, Sampling and Quantization of Image, Relationships between		
	pixels like neighbours of pixel, Adjacency, Connectivity, Distance		
	measures, Translation, Scaling, Rotation and Perspective projection		
	of Image.		

2	Image Transformation : -Orthogonal and Orthonormal Function, 2D Discrete Fourier transform and its properties, Fast Fourier transform of Image, Discrete Cosine and Sine transform (2D), Walsh-Hadamard transform, Haar transform, Slant transform, Karhunen-Loeve transform, Introduction to Wavelet transform and its application.	07	CO2
3	Image Enhancement : -Image enhancement in spatial domain, Basic gray level transformation like Image Negatives, Log transformations, Power Law transformations, Contrast stretching, Gray level and Bit plane slicing, Histogram processing, Enhancement using Arithmetic/Logic operation, Smoothing spatial filters, Sharpening spatial filters, Image enhancement in frequency domain, Smoothing frequency domain filters, Sharpening frequency domain filters, Homomorphic filtering.	10	CO3
4	 Morphological Image Processing: Logic operations of Binary Images, Dilation and Erosion, Opening and Closing, Hit or Miss transformation, Boundary extraction, Region filling, Extraction of connected component, Thinning, Thickening, Skeletons. Image Segmentation: Point, Line and Edge detection, Edge linking and boundary detection (Hough Transform), Thresholding, Region based segmentation. Image Registration: Introduction, Geometric transformation, Plane to plane transformation, Image Mapping models, Mutual Information, Entropy, Registration using MI, Introduction to Stereo Imaging 	10	CO4
5	Image Compression : -Need of Image compression, Data redundancy, Image compression model, Difference between Lossy and Lossless compression, Image compression technique(Huffman, Arithmetic, Run length, LZW coding),Predictive coding(DPCM),JPEG and MPEG compression standard.	08	CO5
6	Image Restoration : -Image degradation/Restoration model, Noise models, Probability density function of important noises (Gaussian, Rayleigh, Gamma, Exponential, Uniform, Salt and Pepper), Restoration in presence of noise by spatial filtering (Mean, Median, Midpoint filter), Periodic noise reduction in frequency domain filtering (Band reject, Band pass, Notch filter), Point spread function, Inverse filtering, Weiner filtering.	05	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books.

- 1. Richard E. Woods, Rafael C. Gonzalez, "Digital Image Processing", Pearson, 3rd edition, 2012.
- 2. Jain A.K, "Fundamentals of Digital Image Processing", Pearson,1st edition, 2015.
- 3. B. Chanda, D. Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2nd edition, 2011.

Reference Books

- 1.M. Sonka, Hlavac, "Image Processing, Analysis, and Machine Vision" Cengage,4th edition, 2014.
- 2. Tamal Bose, "Digital Signal and Image Processing", Wiley, 1st edition, 2003.
- 3. William K. Pratt, "Digital Image Processing", Wiley, 4th edition, 2007.

4. Jayaraman , Veerakumar, Esakkirajan, "Digital Image Processing", McGraw Hill, 1st edition, 2009.

Subject code	Subject Name	Teaching scheme				Credit as	signed	
ISDLO7032	Digital Control System	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Digital Control System	4	-	-	4	-	-	4

Sub Code	Subject Name	Examination scheme									
		r	Гheory (out of 1	L 00)	Tomm	Pract.				
		Interna	al Assess	sment	End Sem	Term	and	Oral	Total		
		Test1	Test2	Avg.	Exam	WOLK	Oral				
ISDLO7032	Digital Control System	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	Credits
ISDLO7032	Digital Control System	4
Course Objective	1. To equip the students with the basic knowledge of digital systems	
	2. To obtain the canonical forms of digital control systems	
	3. To test the stability and steady state performance of digital control	
	system.	
	4. To design the controller and observer for digital control systems.	
Course Outcome	Students will be able to	
	1. Understand the advantages and examples of digital control systems.	
	2. Understand the basics of Discretization.	
	3. Represent digital control system as pulse transfer function.	
	4. Determine stability, and steady-state error of discrete time systems.	
	5. Represent given system in different canonical forms.	
	6. Design controller and observer with state space approach.	

Prerequisite: Knowledge of Linear algebra, Fourier Series, Matrix Algebra, and Nyquist stability criterion.

Module	Contents	Hr	CO
		S	
1	Introduction	10	CO1
	Block diagram of Digital Control System, Advantages &limitations of Digital		
	Control System, comparison of continuous data & discrete data control		
	system, Examples of digital control system, data conversion and quantization,		
	sampling period considerations, sampling as impulse modulation, sampled spectra & aliasing Reconstruction of analog signals, zero order hold, first		
	order hold.		I
2	Principles of discretization- impulse invariance, finite difference	06	CO2
	approximation of derivatives, rectangular rules for integration, Bilinear		
	transformation, Mapping between s-plane and z-plane, Discrete PID controller.		
3	Representation of digital control system	06	CO3
	Linear difference equations, pulse transfer function, input output model,		
	examples of first order continuous and discrete time systems, Signal flow		
	graph applied to digital control systems.		
4	Stability of digital control system in z-domain and Time domain analysis	08	CO4
	Jury's method, R.H. criteria, Comparison of time response of continuous data		
	and digital control system, steady state analysis of digital control system,		

	Effect of sampling period on transient response characteristics.		
5	State space analysis	08	CO5
	Discrete time state equations in standard canonical forms, similarity		
	transformation, state transition matrix, solution of discrete time state		
	equation, Discretization of continuous state space model & its solution.		
6	Pole placement and observer designs	10	CO6
	Concept of reachability, Controllability, Constructability & Observability,		
	Design of controller via Pole placement method, dead beat controller design,		
	concept of duality, state observer design.		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books.

- 1. M. Gopal, "Digital Contol and State Variable Methods", Tata McGraw Hill, 2nd Edition, March 2003.
- 2. K. Ogata, "Discrete Time Control Systems", Pearson Education Inc., 1995.
- 3. B.C. Kuo, "Digital Control Systems", Saunders College Publishing, 1992.

- 1. Richard J. Vaccaro, "Digital Control", McGraw Hill Inc., 1995.
- 2. Ashish Tewari, "Modern Control System Design with MATLAB", John Wiley, Feb. 2002.
- 3. Joe H. Chow, Dean K. Frederick, "Discrete Time Control Problems using MATLAB", Thomson Learning, 1st Edition, 2003.
- 4. Eronini Umez, "System Dynamics and Control", Thomson Learning, 1999.
- 5. Franklin Powel, "Digital Control of Dynamic Systems", Pearson Education, 3rd Edition, 2003.
- 6. Digital Control Systems vol. I & II Isermann, Narosa publications

Subject	Subject Name	Teaching	Scheme		Credits A	ssigned		
Code								
ISDLO7033	Advanced	Theory	Theory Pract. Tut.			Pract.	Tut.	Total
	Microcontroller	4	-	-	4	-	-	4
	Systems							

Subject	Subject Name	Examin	Examination scheme								
Code		Theory Marks(100)				Term	Pract.	Oral	Total		
		Interna Assessn	Internal Assessment(20)			work	and Oral				
		Test1	Test2	Avg.	Exam						
ISDLO7033	Advanced	20	20	20	80	-	-	-	100		
	Microcontroller										
	Systems										

Subject Code	Subject Name	credits					
ISDLO7033	Advanced Microcontroller Systems	4					
Course objectives	 To explain the fundamentals of PIC 18F Microcontroller and of the system. To discuss and explain the integrated hardware of the Microcontroller To illustrate various programming tools and development of using assembly and higher level language. To examine and design, interfacing of PIC 18F Microcontro different peripheral devices such as LCD, keyboard, ADC, D. To design applications using learned concepts of hardware, and interfacing. To describe the working of RTOS and related tasks 						
Course Outcomes	The students will be able to:						
	 Describe working of PIC 18F Microcontroller Archit Programming model. Discuss programming tools and construct software prassembly or 'C' language. Illustrate the knowledge of operation of integrated components such as (CCP) module, ECCP modul Synchronous Serial Port (MSSP) Module, Enhanced Synchronous, Asynchronous Receiver Transmitter (Analog-To-Digital Converter (A/D) Module. Investigate and construct circuits for interfacing of components with PIC 18F Microcontroller. Design and develop sophisticated application based or Microcontroller such as Temperature controller, PID contr etc. Describe the principle of working of RTOS and related task 	ecture and rograms in hardware le. Master Universal EUSART), peripheral peripheral n PIC 18F roller, RTC					

Prerequisite: Knowledge of digital electronics, microcontrollers, programming skills

Module	Contents	Hrs	СО
			Mapping
1	Introduction to PIC 18F Microcontroller		
	PIC 18F Microcontroller architecture, Hardware PIC 18F Microcontroller family, PIC18F architecture, features PIC18F4520, Block diagram, Oscillator configuration, power saving modes. Memory model, EEPROM and RAM, Program Memory. Hardware multiplier, Interrupt structure.	06	CO1
2	PIC 18F Software	10	CO2
	PIC18F addressing modes, Instruction set, Instruction format, Integrated Development Environment (IDE), Assembling, Debugging, and Executing a program using MPLAB IDE in assembly and embedded C. Data copy operation, Arithmetic operation, Branch and Skip operation, Logic operations, bit Operation, Stack and Subroutine, Code conversion programs and Software Design, Programming practice using assembly & C compiler.		
3	Integrated peripherals of PIC 18F Microcontroller	08	CO3
	I/O ports, Timer, capture/compare/PWM (CCP) module, ECCP module. Master Synchronous Serial Port (MSSP) Module, Enhanced Universal Synchronous, Asynchronous Receiver Transmitter (EUSART), Analog- To-Digital Converter (A/D) Module, Comparator module.		
4	PIC 18F Interfacing	08	CO4
	Interfacing to LCD, 7 segment display, Keyboard, ADC, DAC, relay, DC motor, Stepper Motor.		
5	Case Studies	08	CO5
	PWM Generation, Digital encoder, PID Controller, Temperature controller, RTC, Speed Control of DC motors and similar system design		
6	Introduction to Real Time Operating System	08	CO6
	Introduction to RTOS concept. Tasks and task states, task and data, Semaphores and shared data.		
	Multitasking operating systems, Context switching, task tables, and kernels, Task swapping methods (Time slice, Pre-emption, Co-operative multitasking)		
	Scheduler algorithms (Rate monotonic, Deadline monotonic scheduling) Priority inversion, Tasks, threads and processes, Exceptions, Example of any tiny RTOS.		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of

4 to 5 marks will be asked.

- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Mazidi M.A., PIC 18F Microcontroller & Embedded systems, Pearson Education Second edition.
- 2. Ramesh Gaonkar, Fundamentals of Microcontrollers and application in Embedded system (With PIC 18 Microcontroller family) Penram International Publishing.
- Steve Heath, Embedded Systems Design, Newnes publication, Second edition, ISBN 0 7506 5546

- 1. John B. Peatman, Design with PIC Microcontroller, Pearson Education
- 2. Han-way Huang, PIC Microcontroller: An Introduction to Software & Hardware Interfacing, Thomson Delmar Learning, India Edition.
- 3. David Simon, Embedded Software Primer, Pearson Education, ISBN 81-7808-045-1.
- 4. Tony Givargis, Embedded System Design: A Unified Hardware/Software Introduction, Wiley Student Edition.
- 5. Rajkamal, Embedded Systems, TMH, Second Edition.

Subject code	Subject Name	Teaching	Scheme (I	Hrs)	Credits Assigned			
ISDLO 7034	Mechatronics	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		4	-	-	4	-	-	4

Subject code				E	xaminatio	on Scheme			
		Theory(out of 100)					Draat		
	Subject Name	Internal Assessment (out of 20)			End Sem.	Theory	And Oral	Oral	Total
		Test 1	Test 2	Avg.	Exam		Ulai		
ISDLO 7034	Mechatronics	20	20	20	80	-	-	-	100

Subject Code	Subject Name	Credits
ISDLO7034	Mechatronics	4
Course Objectives	 To present architecture of the me To study on broad spectrum the and electrical actuators and t systems. Development of process plan mechatronic systems. 	chatronics system design characteristics of the mechanical heir selection for mechatronic and templates for design of
Course Outcomes	 The students will be able to Describe mechatronics system. Apply the concept of system mod Identify the suitable sensor and a system. Explain feedback and intelligent Learn mechatronics system valid Integrate the components in mech 	deling ctuator for a mechatronic controllers ation hatronics system

Prerequisites: Signal conditioning, controllers and signals and systems, communication protocols.

Modulo	Contents		СО
wiouule	Contents	1115.	Mapping
	Introduction to mechatronics systems:		CO1
	Definition and evolution levels of mechatronics, integrated design		
1	issues in mechatronics, key elements of mechatronics, mechatronics	06	
	design process- modeling and simulation, prototyping, deployment /life		
	cycle, advanced approaches in mechatronics.		
	Modeling and Simulation of physical systems:		CO2
	Simulation and block diagrams, Analogies and impedance diagrams,	10	
	electrical system-bridge circuit system, transformer, mechanical		

	translational and rotational systems-sliding block with friction, elevator cable system, mass-damper system, automobile suspension system, mechanical lever system, geared elevator system, electromechanical coupling- DC motor, fluid systems-three tank liquid system, hydraulic actuator and hydraulic pressure regulator.		
	Hardware components:		CO3
	Sensors: motion and position measurement, force, torque and tactile		
	sensors, ultrasonic and range sensors, fiber optic sensors, micro		
	sensors.		
	Actuators: Pneumatic and hydraulic-directional and pressure control		
3	valves, cylinders, servo proportional control valves, rotary actuators,	10	
	Electrical actuation: A.C and DC motors, stepper motors, mechanical		
	Switches and solid state switches.		
	retebets and payal balt and chain drives bearings mechanical espects		
	of motor selection piezoelectric actuators, magnetostrictive actuators		
	memory metal actuators. Programmable Logic Controller		
	Intelligent control:		
	Automatic control methods Artificial Neural Network(ANN) –		CO4
	Modeling, basic model of neuron, characteristics of ANN, perceptron,		001
4	learning algorithms, fuzzy logic – propositional logic, membership	10	
	function, fuzzy logic and fuzzy rule generation, defuzzification, time		
	dependent and temporal fuzzy logic.		
	Components based modular design and system validation:		CO5
5	Components based modular design view, system validation, validation	06	
5	methodology- integrated and design dependence, distributed local	00	
	level, validation schemes, fusion technique		
	Integration:		
	Advanced actuators, consumer mechatronic products, hydraulic		
6	fingers, surgical equipment, industrial robot, autonomous guided		
	vehicle, drilling machine, 3D Plotter, Motion Control Systems-Printing		CO6
	machines, coil winding machines, machine tools, and robotics, IC, and	06	
	PCB manufacturing.		

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 question need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus where in sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Devdas Shetty and Richard Kolk, "Mechatronics System Design", Thomson Learning, 2nd reprint, 2001.
- 2. W. Bolton, "Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering", Pearson Education Ltd, 4th edition, 2010.
- 3. Nitaigour Mahalik, "Mechatronics- Principles, Concepts and Applications", Tata McGraw Hill.
- 4. Stamatios V.Kartalopoulos, "Understanding Neural Networks and fuzzy Logic", PHI,3rd reprint, 2013.
- 5. Zhijun Li, Shuzhi Sam Ge, "Fundamentals in Modeling and Control of Mobile Manipulators", March 30, 2017, by CRC Press.
- 6. Sergey Edward Lyshevski, "Mechatronics and Control of Electromechanical Systems", May 30, 2017, by CRC Press.
- 7. Bodgan Wilamowski, J. David Irwin, "Control and Mechatronics", October 12, 2017, by CRC Press.
- 8. Takashi Yamaguchi, Mitsuo Hirata, Justin Chee Khiang Pang, "High-Speed Precision Motion Control", March 29, 2017, by CRC Press.
- 9. David Allan Bradley, Derek Seward, David Dawson, Stuart Burge, "Mechatronics and the Design of Intelligent Machines and Systems", November 17, 2000, by CRC Press.
- 10. Clarence W. de Silva, Farbod Khoshnoud, Maoqing Li, Saman K. Halgamuge, "Mechatronics: Fundamentals and Applications", November 17, 2015, by CRC Press.
- 11. Clarence W. de Silva, "Mechatronics: A Foundation Course", June 4, 2010 by CRC Press.
- 12. GENERAL CATALOGUE 2011 Motion & Drives, OMRON.

Subject	Subject	Teaching Scheme				Credits Assigned			
Code	Name								
ISDLO	Building	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
7035	Automation	4	-	-	4	-	-	4	

Subject	Subject		Examination scheme							
Code	Name	Theory Marks(10			0)	Term	Pract.	Oral	Total	
		Internal Assessment(20)			End	work	and			
		Test1	Test2	Avg.	Sem		Oral			
					Exam					
ISDLO	Building	20	20	20	80	-	-	-	100	
7035	Automation									

Subject Code	Subject Name	credits
ISDLO7035	Building Automation	4
Course objectives	 To brief students with origin and evolution of automation. To train them with architecture and operation of BAS. To facilitate them for designing automation system for in building. Develop technique for preparation of various documents 	building ntelligent required
Course Outcomes	 The students will be able to: Explain the concept of intelligent building and BAS. Select the hardware and design of HVAC in building a system. Discuss the concept of energy management system. Design and implement the safety system for building. Design security and video management system in BAS. 	automation

Prerequisite: Fundamental of measurement and control, industrial automation, smart buildings.

Module	Contents	Hrs	CO Mapping
1	 Introduction to intelligent buildings: Definitions of intelligent building, Intelligent architecture and structure, Facilities management vs. intelligent buildings, Technology systems and evolution of intelligent buildings. Introduction to Building Automation System: Features, Characteristics, Drawbacks of Building Automation system. Various Systems of Building Automation – Building Management System, Energy Management System, Security System, Safety System, Video Management System. 	06	CO1

2	HVAC system: Introduction, HVAC, Sensors & Transducers – Temperature, Pressure, Level, Flow, RH. Meaning of Analog & Digital Signals, Valves and Actuators, Valve & Actuator Selection, Various Controllers, Concept of Controller IOs, Std Signals, Signal Compatibility between Controller & Field Devices. AHU – Concept, Components, Working Principle. AC Plant Room – Concept, Components, Refrigeration Cycle Working Principle, Chiller Sequencing, AC Plant Sequencing. Feedback Control Loops, Heat – Types, Heat Transfer Principles, Measurement of Heat Transfer. Psychrometry –Concept, ASHRAE Psychrometric Chart, Meaning of Various Terms – DBT, WBT, ST, RH, DPT, Sensible & Latent Cooling & Heating, Numericals. Job IO Summary Calculation, Controller Sizing, AI to DI Conversion, Cable Selection, Earthing – Meaning, Importance, Panel Earthing, EMI & Tackling EMI. Logic Examples, CL Programming.	12	CO2
3	Energy Management System: Concept, Energy Meters, Types, Meter Networking, Monitoring Energy Parameters, Analysis of Power Quality – Instantaneous Power, Active Power, Reactive Power, Power Factor, Voltage, Current. Effect of Power Quality on Energy Consumption, Energy Reports, Energy Conservation, Importance of Energy Saving.	06	CO3
4	Safety Systems: Introduction, Fire –Meaning, Fire Development Stages, Fire Sensors & Detectors, Detector Placement, Detectors Required For Various Applications. Fire Extinguishing Principles, Fire Extinguishers & Its Classification. Fire Alarm System – Controllers, Components, Features, Concept of Fire Loop & Fire Devices, 2-Wire & 4-Wire Loops, Working Principle, System Description, Pre-alarm, Alarm, Trouble, Fault, Differences, Cable Selection, Installation Guidelines Best Installation Practices, Logic Example. NFPA and IS2189 Stds, System Programming.	08	CO4
5	Security Systems: Introduction, Access Control – Concept, Generic Model, Components, Types, Features, Card Technologies, Protocols, Controllers, Concept of Antipassback, Biometrics, Issues With Biometrics, Cabling, Video Door phone, Intrusion Detection System – Sensors, Working Principle, Access Control System Programming. Video Management: Introduction, CCTV Cameras, CCD Camera Basics, Traditional	10	CO5

	CCTV System, Video Recording, Drawbacks, Digital Video		
	Recording, Features, Functionalities, Digital Vs Analog Recording,		
	Digital Video Management System – Introduction, Features,		
	Advancements & Differences from Earlier Video Techniques,		
	TCP/IP Networking Fundamentals, System Network Load		
	Calculations, Network Design.		
6	Integrated Systems: Introduction, Integration of Building	06	CO6
	Management System, Energy Management System, Safety System,		
	Security Systems & Video Management, Benefits of Integrated		
	Systems, Challenges, Future Prospects of Integrated Systems.		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Shengwei Wang, Intelligent Buildings and Building Automation, 2009.
- 2. Reinhold A. Carlson Robert A. Di Giandomenico, 'Understanding Building Automation Systems: Direct Digital Control, Energy Management, Life Safety, Security Access Control, Lighting, Building',1st edition (R.S. Means Company Ltd), (1991).

- 1. Roger W. Haines, "HVAC system Design Handbook", fifth edition.
- 2. National Joint Apprenticeship & Training Committee, Building Automation System Integration With Open Protocols: System Integration With Open Protocols
- 3. John I. Levenhagen and Donald H. Spethmann, HVAC Controls and Systems (Mechanical Engineering), 1992.
- 4. James E.Brumbaugh, "HVAC fundamentals", vol: 1 to 3.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
ILO7011	Product Lifecycle Management (abbreviated as PLM)	3	-	3	-	3		

Course code	Course Name	Examination Scheme						
		Theory						
		Internal Assessment			End	Exam	Term	Total
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total
					Exam	(Hrs.)		
ILO7011	Product Lifecycle Management	20	20	20	80	03	-	100

	• To familiarize the students with the need, benefits and components of PLM					
Course	• To acquaint students with Product Data Management & PLM strategies					
Objectives	• To give insights into new product development program and guidelines					
	for designing and developing a product					
	• To familiarize the students with Virtual Product Development					
Course Outcomes	Student will be able to					
	• Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.					
	• Illustrate various approaches and techniques for designing and					
	developing products.					
	• Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.					
	• Acquire knowledge in applying virtual product development tools for					
	components, machining and manufacturing plan					

Module	Contents	Hours				
1	Introduction to Product Lifecycle Management (PLM): Product	12				
	Lifecycle Management (PLM), Need for PLM, Product Lifecycle					
	Phases, Opportunities of Globalization, Pre-PLM Environment, PLM					
	Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM,					
	Focus and Application, A PLM Project, Starting the PLM Initiative,					
	PLM Applications					
	PLM Strategies: Industrial strategies, Strategy elements, its					
	identification, selection and implementation, Developing PLM Vision					
	and PLM Strategy, Change management for PLM					
2	Product Design: Product Design and Development Process, Engineering	09				
	Design, Organization and Decomposition in Product Design, Typologies					
	of Design Process Models, Reference Model, Product Design in the					
	Context of the Product Development Process, Relation with the					
	Development Process Planning Phase, Relation with the Post design					
	Planning Phase, Methodological Evolution in Product Design,					
	Concurrent Engineering, Characteristic Features of Concurrent					

	Engineering, Concurrent Engineering and Life Cycle Approach, New				
	Product Development (NPD) and Strategies, Product Configuration and				
	Variant Management, The Design for X System, Objective Properties				
	and Design for X Tools, Choice of Design for X Tools and Their Use in				
	the Design Process				
3	Product Data Management (PDM):Product and Product Data, PDM	06			
	systems and importance, Components of PDM, Reason for implementing				
	a PDM system, financial justification of PDM, barriers to PDM				
	implementation				
4	Virtual Product Development Tools: For components, machines, and	06			
	manufacturing plants, 3D CAD systems and realistic rendering				
	techniques, Digital mock-up, Model building, Model analysis, Modeling				
	and simulations in Product Design, Examples/Case studies				
5	Integration of Environmental Aspects in Product Design: Sustainable	06			
	Development, Design for Environment, Need for Life Cycle				
	Environmental Strategies, Useful Life Extension Strategies, End-of-Life				
	Strategies, Introduction of Environmental Strategies into the Design				
	Process, Life Cycle Environmental Strategies and Considerations for				
	Product Design				
6	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and	06			
	Framework of Life Cycle Assessment, Phases of LCA in ISO Standards,				
	Fields of Application and Limitations of Life Cycle Assessment, Cost				
	Analysis and the Life Cycle Approach, General Framework for LCCA,				
	Evolution of Models for Product Life Cycle Cost Analysis				

Books Recommended:

Reference Books:

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, ImmonenAnselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.
| University of Mumbai | | | | | | | | |
|----------------------|--|---------------------|----------------------|------------------|----------|-------|--|--|
| Course
Code | Course Name | Teaching
(Contac | g Scheme
t Hours) | Credits Assigned | | | | |
| | | Theory | Tutorial | Theory | Tutorial | Total | | |
| ILO7012 | Reliability Engineering
(abbreviated as RE) | 3 | - | 3 | - | 3 | | |

Course	Course Name	Examination Scheme								
		Internal Assessment			End	Exam	Term	Total		
coue		Test 1	Teat 2	Ava	Sem.	Duration	Work	Total		
		Test I	Test 2	Avg.	Exam	(Hrs.)				
ILO7012	Reliability Engineering	20	20	20	80	03	-	100		

Course Objectives	 To familiarize the students with various aspects of probability theory To acquaint the students with reliability and its concepts To introduce the students to methods of estimating the system reliability of simple and complex systems
,	• To understand the various aspects of Maintainability, Availability and FMEA procedure
Course Outcomes	 Student will be able to Understand and apply the concept of Probability to engineering problems
	 Apply various reliability concepts to calculate different reliability parameters Estimate the system reliability of simple and complex systems
	Carry out a Failure Mode Effect and Criticality Analysis

Module	Contents	Hours							
1	Probability theory: Probability: Standard definitions and concepts;	10							
	Conditional Probability, Baye's Theorem.								
	Probability Distributions: Central tendency and Dispersion; Binomial,								
	Normal, Poisson, Weibull, Exponential, relations between them and								
	their significance.								
	Measures of Dispersion: Mean, Median, Mode, Range, Mean								
	Deviation, Standard Deviation, Variance, Skewness and Kurtosis.								
2	Reliability Concepts: Reliability definitions, Importance of Reliability,								
	Quality Assurance and Reliability, Bath Tub Curve.								
	Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean								
	Time To Failure (MTTF), MTBF, Reliability Functions.								
	Reliability Hazard Models: Constant Failure Rate, Linearly increasing,								
	Time Dependent Failure Rate, Weibull Model. Distribution functions								
	and reliability analysis.								
3	System Reliability	05							
	System Configurations: Series, parallel, mixed configuration, k out of n								
	structure, Complex systems.								
4	Reliability Improvement	10							
	Redundancy Techniques: Element redundancy. Unit redundancy								

	Standby redundancies. Markov analysis.						
	System Reliability Analysis – Enumeration method, Cut-set method,						
	Success						
	Path method, Decomposition method.						
5	Maintainability and Availability	05					
	System downtime, Design for Maintainability: Maintenance						
	requirements, Design methods: Fault Isolation and self-diagnostics,						
	Parts standardization and Interchangeability, Modularization and						
	Accessibility, Repair Vs Replacement.						
	Availability – qualitative aspects.						
6	Failure Mode, Effects and Criticality Analysis: Failure mode effects	05					
	analysis, severity/criticality analysis, FMECA examples. Fault tree						
	construction, basic symbols, development of functional reliability block						
	diagram, Fau1t tree analysis and Event tree Analysis						

Reference Books:

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7013	Management Information System (abbreviated as MIS)	3	-	3	-	3			

		Examination Scheme								
Course										
code	Course Name	Internal Assessment			End	Exam	Term	Total		
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total		
					Exam	(Hrs.)				
ILO7013	Management Information System	20	20	20	80	03	-	100		

	• The course is blend of Management and Technical field.					
	• Discuss the roles played by information technology in today's business					
	and define various technology architectures on which information					
Course Objectives	systems are built					
	• Define and analyze typical functional information systems and identify					
	how they meet the needs of the firm to deliver efficiency and					
	competitive advantage					
	• Identify the basic steps in systems development					
	• Define and analyze various MIS management responsibilities, including					
	planning, budgeting, project management, and personnel management					
	 Discuss critical ethical and social issues in information systems 					
	Student will be able to					
	• Explain how information systems Transform Business					
	• Identify the impact information systems have on an organization					
~	• Describe IT infrastructure and its components and its current trends					
Course	• Understand the principal tools and technologies for accessing					
Outcomes	information from databases to improve business performance and					
	decision making					
	• Identify the types of systems used for enterprise-wide knowledge					
	management and how they provide value for businesses					

Module	Contents	Hours
1	Introduction To Information Systems (IS): Computer Based Information	7
	Systems, Impact of IT on organizations, Importance of IS to Society.	
	Organizational Strategy, Competitive Advantages and IS.	
2	Data and Knowledge Management: Database Approach, Big Data, Data	9
	warehouse and Data Marts, Knowledge Management.	
	Business intelligence (BI): Managers and Decision Making, BI for Data	
	analysis and Presenting Results	

3	Ethical issues and Privacy: Information Security. Threat to IS, and	6
	Security Controls	
4	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping,	7
	Marketing, Operational and Analytic CRM, E-business and E-	
	commerce – B2B B2C. Mobile commerce.	
5	Computer Networks Wired and Wireless technology, Pervasive	6
	computing, Cloud computing model.	
6	Information System within Organization: Transaction Processing	10
	Systems, Functional Area Information System, ERP and ERP support of	
	Business Process.	
	Acquiring Information Systems and Applications: Various System	
	development life cycle models.	

Reference Books:

- 1. Management Information Systems: Kelly Rainer, Brad Prince by Wiley
- 2. Management Information Systems: Managing the Digital Firm (10th Edition). K.C. Laudon and J.P. Laudon, Prentice Hall, 2007.
- 3. Managing Information Systems: Strategy and Organization, D. Boddy, A. Boonstra, Prentice Hall, 2008

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7014	Design of Experiments (abbreviated as DoE)	3	-	3	-	3			

	Course Name	Examination Scheme								
Course										
course		Internal Assessment			End	Exam	Term	Total		
couc		Test 1	Tost 2	Ava	Sem.	Duration	Work	Total		
		Test I	Test Z	Avg.	Exam	(Hrs.)				
ILO7014	Design of Experiments	20	20	20	80	03	-	100		

	1. To understand the issues and principles of Design of Experiments
Course Objectives	(DOE).
	2. To list the guidelines for designing experiments.
	3. To become familiar with methodologies that can be used in conjunction
	with experimental designs for robustness and optimization
	Student will be able to
Course	• Plan data collection, to turn data into information and to make decisions
Outcomes	that lead to appropriate action.
	• Apply the methods taught to real life situations.
	• Plan, analyze, and interpret the results of experiments

Module	Contents	Hours
1	Introduction: Strategy of Experimentation, Typical Applications of	6
	Experimental Design, Guidelines for Designing Experiments, Response	
	Surface Methodology.	
2	Fitting Regression Models: Linear Regression Models, Estimation of	8
	the Parameters in Linear Regression Models, Hypothesis Testing in	
	Multiple Regression, Confidence Intervals in Multiple Regression,	
	Prediction of new response observation, Regression model diagnostics,	
	Testing for lack of fit.	
3	Two-Level Factorial Designs: The 2 ² Design, The 2 ³ Design, The	7
	General 2^k Design, A Single Replicate of the 2^k Design, The Addition of	
	Center Points to the 2 ^k Design, Blocking in the 2 ^k Factorial Design, Split-	
	Plot Designs.	
4	Two-Level Fractional Factorial Designs: The One-Half Fraction of the	7
	2^{k} Design, The One-Quarter Fraction of the 2^{k} Design, The General 2^{k-p}	
	Fractional Factorial Design, Resolution III Designs, Resolution IV and V	
	Designs, Fractional Factorial Split-Plot Designs.	
5	Conducting Tests: Testing Logistics, Statistical aspects of conducting	7
	tests, Characteristics of good and bad data sets, Example experiments,	
	Attribute Vs Variable data sets.	
6	Taguchi Approach: Crossed Array Designs and Signal-to-Noise Ratios,	4
	Analysis Methods, Robust design examples.	

Reference Books:

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Philip J Ross, "Taguchi Technique for Quality Engineering," McGraw Hill.
- 7. Madhav S Phadake, "Quality Engineering using Robust Design," Prentice Hall.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
IL07015	Operation Research (abbreviated as OR)	3	-	3	-	3		

Course code		Examination Scheme								
	Course Name	Theory								
		Internal Assessment			End	Exam	Term	Total		
		Test 1 Test 2	Test 2	Test 1 Test 2	at 1 Test 2 Ave	Aug	Sem.	Duration	Work	Total
			Avg.	Exam	(Hrs.)					
ILO7015	Operation Research	20	20	20	80	03	-	100		

Course • Understand the mathematical tools that are needed to solve optimizate problems. • Use mathematical software to solve the proposed models. Student will be able to
Objectives • Use mathematical software to solve the proposed models. Student will be able to • Use mathematical software to solve the proposed models.
Objectives problems. • Use mathematical software to solve the proposed models. Student will be able to Student will be able to
Use mathematical software to solve the proposed models. Student will be able to Use deartered the theoretical modelines of the simpler mothed for line
Student will be able to
- III denotes d'un des des sectores del ser del ser ef des simulars products d'un lies
• Understand the theoretical workings of the simplex method for line
programming and perform iterations of it by hand.
• Understand the relationship between a linear program and its du
including strong duality and complementary slackness.
• Perform sensitivity analysis to determine the direction and magnitude
change of a model's optimal solution as the data change.
• Solve specialized linear programming problems like the transportation
and assignment problems.
• Solve network models like the shortest path, minimum spanning tr
and maximum flow problems.
• Understand the applications of, basic methods for, and challenges
integer programming
• Model a dynamic system as a queuing model and compute import
performance measures

Module	Contents	Hours
1	Introduction to Operations Research: Introduction, Historical	2
	Background, Scope of Operations Research , Features of Operations	
	Research, Phases of Operations Research, Types of Operations Research	
	Models, Operations Research Methodology, Operations Research	
	Techniques and Tools, Structure of the Mathematical Model,	
	Limitations of Operations Research	
2	Linear Programming: Introduction, Linear Programming Problem,	6
	Requirements of LPP, Mathematical Formulation of LPP, Graphical	
	method, Simplex Method Penalty Cost Method or Big M-method, Two	
	Phase Method, Revised simplex method, Duality, Primal – Dual	
	construction, Symmetric and Asymmetric Dual, Weak Duality Theorem,	
	Complimentary Slackness Theorem, Main Duality Theorem, Dual	
	Simplex Method, Sensitivity Analysis	
3	Transportation Problem: Formulation, solution, unbalanced	6

	Transportation problem. Finding basic feasible solutions – Northwest	
	corner rule, least cost method and Vogel's approximation method.	
	Optimality test: the stepping stone method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the	
	Problem, Hungarian Method Algorithm, Processing of n Jobs Through	
	Two Machines and m Machines, Graphical Method of Two Jobs m	
	Machines Problem Routing Problem, Travelling Salesman Problem	
4	Integer Programming Problem: Introduction, Types of Integer	6
	Programming Problems, Gomory's cutting plane Algorithm, Branch and	
	Bound Technique. Introduction to Decomposition algorithms.	
5	Queuing models: queuing systems and structures, single server and	6
	multi-server models, Poisson input, exponential service, constant rate	
	service, finite and infinite population	
6	Simulation: Introduction, Methodology of Simulation, Basic Concepts,	4
	Simulation Procedure, Application of Simulation Monte-Carlo	
	Method: Introduction, Monte-Carlo Simulation, Applications of	
	Simulation, Advantages of Simulation, Limitations of Simulation	
7	Dynamic programming. Characteristics of dynamic programming.	4
	Dynamic programming approach for Priority Management employment	
	smoothening, capital budgeting, Stage Coach/Shortest Path, cargo	
	loading and Reliability problems.	
8	Games Theory. Competitive games, rectangular game, saddle point,	4
	minimax (maximin) method of optimal strategies, value of the game.	
	Solution of games with saddle points, dominance principle. Rectangular	
	games without saddle point – mixed strategy for 2 X 2 games.	
9	Inventory Models: Classical EOQ Models, EOQ Model with Price	4
	Breaks, EOQ with Shortage, Probabilistic EOQ Model,	

Reference Books:

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
ILO7016	Cyber Security and Laws (abbreviated as CSL)	3	-	3	-	3		

Course code		Examination Scheme							
	Course Name								
		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	TOtal	
					Exam	(Hrs.)			
ILO7016	Cyber Security and Laws	20	20	20	80	03	-	100	

Course	• To understand and identify different types cyber crime and cyber law					
Objectives	• To recognized Indian IT Act 2008 and its latest amendments					
Objectives	• To learn various types of security standards compliances					
	Student will be able to					
	• Understand the concept of cyber crime and its effect on outside world					
Course	• Interpret and apply IT law in various legal issues					
Outcomes	• Distinguish different aspects of cyber law					
	• Apply Information Security Standards compliance during software					
	design and development					

Module	Contents	Hours
1	Introduction to Cybercrime: Cybercrime definition and origins of the	4
	world, Cybercrime and information security, Classifications of	
	cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective	
	on cybercrimes.	
2	Cyber offenses & Cybercrime: How criminal plan the attacks, Social	10
	Engg, Cyber stalking, Cybercafé and Cybercrimes, Botnets, Attack	
	vector, Cloud computing, Proliferation of Mobile and Wireless Devices,	
	Trends in Mobility, Credit Card Frauds in Mobile and Wireless	
	Computing Era, Security Challenges Posed by Mobile Devices, Registry	
	Settings for Mobile Devices, Authentication Service Security, Attacks	
	on Mobile/Cell Phones, Mobile Devices: Security Implications for	
	Organizations, Organizational Measures for Handling Mobile, Devices-	
	Related Security Issues, Organizational Security Policies and Measures	
	in Mobile Computing Era, Laptops	
3	Tools and Methods Used in Cyberline: Phishing, Password Cracking,	6
	Keyloggers and Spywares, Virus and Worms, Steganography, DoS and	
	DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless	
	Networks, Phishing, Identity Theft (ID Theft)	
4	The Concept of Cyberspace: E-Commerce, The Contract Aspects in	8
	Cyber Law ,The Security Aspect of Cyber Law ,The Intellectual	
	Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law	
	, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law,	
	Legal Framework for Electronic Data Interchange Law Relating to	

	Electronic Banking, The Need for an Indian Cyber Law						
5	Indian IT Act.: Cyber Crime and Criminal Justice : Penalties,	8					
	Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its						
	Amendments						
6	Information Security Standard compliances	6					
	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.						

Reference Books:

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7017	Disaster Management and Mitigation Measures (abbreviated as DMMM)	3	-	3	-	3			

		Examination Scheme								
Course										
code	Course Name	Internal Assessment			End	Exam	Term	Total		
coue		Test 1	Test 2	Avg.	Sem.	Duration	Work	TOtal		
		Test I			Exam	(Hrs.)				
	Disaster									
ILO7017	Management and	20	20	20	80	03		100		
	Mitigation	20	20	20	80	03	-	100		
	Measures									

Course Objectives• To understand the various types of disaster occurring around the world • To identify extent and damaging capacity of a disaster • To study and understand the means of losses and methods to overcome /minimize it. • To understand role of individual and various organization during and after disaster • To know warning systems, their implementation and based on this to initiate training to a laymen • To understand the emergency government response structures before, during and after disasterCourse OutcomesStudent will be able to • Understand natural as well as manmade disaster and their extent and possible effects on the economy. • Planning of national importance structures based upon the previous history. • Understand government policies, acts and various organizational structure associated with an emergency.		
Course Objectives• To study and understand the means of losses and methods to overcome /minimize it.Course Objectives• To understand role of individual and various organization during and after disaster• To understand role of individual and various organization during and after disaster• To know warning systems, their implementation and based on this to initiate training to a laymen• To understand application of GIS in the field of disaster management• To understand the emergency government response structures before, during and after disasterStudent will be able to• Understand natural as well as manmade disaster and their extent and possible effects on the economy.• Planning of national importance structures based upon the previous history.• Understand government policies, acts and various organizational structure associated with an emergency.• Know the simple do's and don'ts in such extreme events and act accordingly		 To understand the various types of disaster occurring around the world To identify extent and damaging capacity of a disaster
Course Objectives• To study and understand the means of losses and methods to overcome /minimize it.Course Objectives• To understand role of individual and various organization during and after disaster• To know warning systems, their implementation and based on this to initiate training to a laymen• To understand application of GIS in the field of disaster management• To understand the emergency government response structures before, during and after disasterStudent will be able to• Understand natural as well as manmade disaster and their extent and possible effects on the economy.• Planning of national importance structures based upon the previous history.• Understand government policies, acts and various organizational structure associated with an emergency.• Know the simple do's and don'ts in such extreme events and act accordingly		• To identify extent and damaging capacity of a disaster
Course Objectives• To understand role of individual and various organization during and after disaster• To know warning systems, their implementation and based on this to initiate training to a laymen• To understand application of GIS in the field of disaster management• To understand the emergency government response structures before, during and after disaster• Student will be able to• Understand natural as well as manmade disaster and their extent and possible effects on the economy.• Planning of national importance structures based upon the previous history.• Understand government policies, acts and various organizational structure associated with an emergency.• Know the simple do's and don'ts in such extreme events and act accordingly		• To study and understand the means of losses and methods to overcome /minimize it.
Objectives • To know warning systems, their implementation and based on this to initiate training to a laymen • To understand application of GIS in the field of disaster management • To understand the emergency government response structures before, during and after disaster Student will be able to • Understand natural as well as manmade disaster and their extent and possible effects on the economy. • Planning of national importance structures based upon the previous history. • Understand government policies, acts and various organizational structure associated with an emergency. • Know the simple do's and don'ts in such extreme events and act accordingly	Course	• To understand role of individual and various organization during and after disaster
 To understand application of GIS in the field of disaster management To understand the emergency government response structures before, during and after disaster Student will be able to Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 	Objectives	• To know warning systems, their implementation and based on this to initiate training to a laymen
 To understand the emergency government response structures before, during and after disaster Student will be able to Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 		• To understand application of GIS in the field of disaster management
Course Outcomes Student will be able to • Understand natural as well as manmade disaster and their extent and possible effects on the economy. • Planning of national importance structures based upon the previous history. • Understand government policies, acts and various organizational structure associated with an emergency. • Know the simple do's and don'ts in such extreme events and act accordingly		• To understand the emergency government response structures before
Course Student will be able to Outcomes Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly		• To understand the emergency government response structures before,
 Student will be able to Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 		during and after disaster
 Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 		Student will be able to
 Course Outcomes Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 		• Understand natural as well as manmade disaster and their extent and possible effects on the economy
 Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 		possible effects on the economy.
 Outcomes Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 	Course	• Planning of national importance structures based upon the previous
 Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 	Outcomos	history.
 structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 	Outcomes	• Understand government policies, acts and various organizational
• Know the simple do's and don'ts in such extreme events and act accordingly		structure associated with an emergency.
		• Know the simple do's and don'ts in such extreme events and act accordingly

Module	Contents	Hours						
1	Introduction: Definition of Disaster, hazard, global and Indian	03						
	scenario, general perspective, importance of study in human life,							
	Direct and indirect effects of disasters, long term effects of disasters.							
	Introduction to global warming and climate change.							
2	Natural Disaster and Manmade disasters: Natural Disaster: Meaning	06						
	and nature of natural disaster, Flood, Flash flood, drought, cloud							
	burst, Earthquake, Landslides, Avalanches, Volcanic eruptions,							
	Mudflow, Cyclone, Storm, Storm Surge, climate change, global							
	warming, sea level rise, ozone depletion . Manmade Disasters:							

	Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.	
3	Disaster Management, Policy and Administration: Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	06
4	Institutional Framework for Disaster Management in India: Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
5	Financing Relief Measures: Ways to raise finance for relief expenditure, Role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. International relief aid agencies and their role in extreme events.	09
6	Preventive and Mitigation Measures: Pre-disaster, during disaster and post-disaster measures in some events in general, Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication. Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. Do's and don'ts in case of disasters and effective implementation of relief aids.	06

Reference Books:

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications

7. Concepts and Techniques of GIS –C.P. Lo Albert, K.W. Yonng – Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
ILO7018	Energy Audit and Management (abbreviated as EAM)	3	-	3	-	3		

	Course Name	Examination Scheme								
Course										
code		Internal Assessment			End	Exam	Term	Total		
coue		Test 1	Toot 2	Ava	Sem.	Duration	Work	TOtal		
		I ESt I	I ESt Z	Avg.	Exam	(Hrs.)				
ILO7018	Energy Audit and Management	20	20	20	80	03	-	100		

Course Objectives	 To understand the importance of energy security for sustainable development and the fundamentals of energy conservation. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management To relate the data collected during performance evaluation of systems
	for identification of energy saving opportunities
	Student will be able to
	• To identify and describe present state of energy security and its
	importance.
	• To identify and describe the basic principles and methodologies adopted
Course	in energy audit of an utility.
Outcomes	• To describe the energy performance evaluation of some common
Outcomes	electrical installations and identify the energy saving opportunities.
	• To describe the energy performance evaluation of some common
	thermal installations and identify the energy saving opportunities
	• To analyze the data collected during performance evaluation and
	recommend energy saving measures

Module	Contents	Hours
1	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy	4
	Sector Reforms, Energy Security, Energy Conservation and its	
	Importance, Energy Conservation Act-2001 and its Features. Basics of	
	Energy and its various forms, Material and Energy balance	
2	Energy Audit Principles: Definition, Energy audit- need, Types of	8
	energy audit, Energy management (audit) approach-understanding	
	energy costs, Bench marking, Energy performance, Matching energy use	
	to requirement, Maximizing system efficiencies, Optimizing the input	
	energy requirements, Fuel and energy substitution. Elements of	
	monitoring& targeting; Energy audit Instruments; Data and information-	
	analysis. Financial analysis techniques: Simple payback period, NPV,	
	Return on investment (ROI), Internal rate of return (IRR)	

3	Energy Management and Energy Conservation in Electrical	10							
	System: Electricity billing, Electrical load management and maximum								
	demand Control; Power factor improvement, Energy efficient								
	equipments and appliances, star ratings. Energy efficiency measures in								
	lighting system. Lighting control: Occupancy sensors daylight								
	integration and use of intelligent controllers								
	integration, and use of intenigent controners.								
	Energy conservation opportunities in: water pumps, industrial drives,								
	induction motors, motor retrofitting, soft starters, variable speed drives.								
4	Energy Management and Energy Conservation in Thermal	10							
	Systems: Review of different thermal loads; Energy conservation								
	opportunities in: Steam distribution system, Assessment of steam								
	distribution losses, Steam leakages, Steam trapping, Condensate and								
	flash steam recovery system.								
	General fuel economy measures in Boilers and furnaces, Waste heat								
	recovery use of insulation- types and application. HVAC system:								
	Coefficient of performance, Capacity, factors affecting Refrigeration								
5	and Air Conditioning system performance and savings opportunities	1							
5	techniques Case studies based on: Motors and variable speed drive	4							
	numps HVAC system calculations: Lighting System: Installed Load								
	Efficacy Ratio (ILER) method. Financial Analysis.								
6	Energy conservation in Buildings: Energy Conservation Building	3							
_	Codes (ECBC): Green Building, LEED rating, Application of Non-								
	Conventional and Renewable Energy Sources								

Reference Books:

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7019	Development Engineering (abbreviated as DE)	3	-	3	-	3			

		Examination Scheme								
Course										
code	Course Name	Intern	Internal Assessment			Exam	Term	Total		
coue		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total		
		Test I			Exam	(Hrs.)				
II 07010	Development	20	20	20	80	03		100		
IL07019	Engineering	20	20	20	80	05	-	100		

	• To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural
	• To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas
Course Objectives	 An exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life' in the
	 To understand the Nature and Type of Human Values relevant to
	Student will be able to
	Apply knowledge for Rural Development
Course	• Apply knowledge for Management Issues.
Outcomes	• Apply knowledge for Initiatives and Strategies.
Outcomes	• Develop acumen for higher education and research.
	• Master the art of working in group of different nature.
	• Develop confidence to take up rural project activities independently.

Module	Contents	Hours
1	Introduction to Rural Development Meaning, nature and scope of	08
	development; Nature of rural society in India; Hierarchy of settlements;	
	Social, economic and ecological constraints for rural development.	
	Roots of Rural Development in India Rural reconstruction and	
	Sarvodaya programme before independence; Impact of voluntary effort	
	and Sarvodaya Movement on rural development; Constitutional	
	direction, directive principles; Panchayati Raj - beginning of planning	
	and community development; National extension services.	
2	Post-Independence rural Development Balwant Rai Mehta Committee -	04
	three tier system of rural local. Government; Need and scope for	
	people's participation and Panchayati Raj; Ashok Mehta Committee -	
	linkage between Panchayati Raj, participation and rural development.	
3	Rural Development Initiatives in Five Year Plans Five Year Plans and	06
	Rural Development; Planning process at National, State, Regional and	
	District levels; Planning, development, implementing and monitoring	

	organizations and agencies; Urban and rural interface - integrated	
	approach and local plans; Development initiatives and their	
	convergence; Special component plan and sub-plan for the weaker	
	section; Micro-eco zones; Data base for local planning; Need for	
	decentralized planning; Sustainable rural development.	
4	Post 73rd Amendment Scenario 73rd Constitution Amendment Act,	04
	including - XI schedule, devolution of powers, functions and finance;	
	Panchayati Raj institutions - organizational linkages; Recent changes in	
	rural local planning; Gram Sabha - revitalized Panchayati Raj;	
	Institutionalization; resource mapping, resource mobilization including	
	social mobilization; Information Technology and rural planning; Need	
	for further amendments.	
5	Values and Science and Technology Material development and its	10
	values; the challenge of science and technology; Values in planning	
	profession, research and education. Types of Values Psychological	
	values — integrated personality; mental health; Societal values — the	
	modern search for a good society; justice, democracy, rule of law, values	
	in the Indian constitution; Aesthetic values — perception and enjoyment	
	of beauty; Moral and ethical values; nature of moral judgment; Spiritual	
	values; different concepts; secular spirituality; Relative and absolute	
	values; Human values— humanism and human values; human rights;	
	human values as freedom, creativity, love and wisdom.	
6	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of	04
	responsibility; Work ethics; Professional ethics; Ethics in planning	
	profession, research and education	

Reference Books:

1. ITPI, Village Planning and Rural Development, ITPI, New Delhi

- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi

4. Planning Commission, Five Year Plans, Planning Commission

5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi

6. Planning Guide to Beginners

7. Weaver, R.C., The Urban Complex, Doubleday.

8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.

9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.

10. Watson, V. , Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and

Practice, Vol. 4, No.4, pp.395 - 407

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Subject Code	Subject Name	Tea	ching Sch	eme		Credits A	Assigned	
ISL701	Industrial Process Control-Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Practice	-	2	-	-	1	-	1

Sub Code	Subject Name	Examination scheme								
couc		Internal Assessment			End Sem	Term work	Pract. and	Oral	Total	
		Test 1	Test 2	Avg.	Exam	WOIK	Oral			
ISL701	Industrial Process Control –Lab Practice	-	-	-	-	25	-	25	50	

Subject Code	Subject Name	credits
ISL701	Industrial Process Control-Lab Practice	1
Course objectives	 To impart the knowledge of different industrial unit operations. To make them capable to design and develop instrumer and control scheme for industrial processes. To give them exposure to work in process industry. To explain students about hazardous area and safety system. 	ntation design
Course Outcomes	The students will be able to	
	1. Explain working and control of various heat trans operations	fer unit
	2. Explain working and control of various heat and mass unit operations	transfer
	3. Explain the miscellaneous process equipment and their co	ontrol
	4. Describe the processes of various continuous industries and instrumentation involved in them.	process
	5. Describe the processes of various batch process indus instrumentation involved in them.	tries and
	6. Classify hazardous areas in the industry.	

Syllabus: Same as that of Subject ISC701 Industrial Process Control.

List of Laboratory Experiments/Assignments:

Sr.	Detailed Content	CO Mapping
NO.		
1	Demonstrate the operation and control scheme of Heat exchanger	C01
2	Learn working of various Unit Operations (Boilers/furnace / Distillation column etc.) using online learning resources.	CO2
3	Demonstrate the reactor control system.	CO2
4	Demonstrate the operation & control scheme of a compressor.	CO3
5	Prepare a report on any one industry.	CO4 and CO5
6	Develop some charts on hazardous area classification.	CO6
7	Assignment/Exercise on heat transfer unit operations- heat exchanger, boilers	CO1
8	Assignment/Exercise on heat transfer unit operations-evaporator, furnace	CO1
9	Assignment/Exercise on heat and mass transfer unit operations-Distillation, dryers	CO2
10	Assignment/Exercise on heat and mass transfer unit operations-Crystallization, reactor	CO2
11	Assignment/Exercise on miscellaneous equipment	CO3
12	Assignment/Exercise on hazardous area classification	CO6
13	Assignment/Exercise on continuous process industries	CO4
14	Assignment/Exercise on batch process industries	CO5

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

• Industry visit is advised to understand the unit operations, industrial processes and their control.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignm	ents)	: 10 Marks
Laboratory work (programs / journal)	:	10 Marks
Attendance	:	5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit ass	igned		
ISL702	Biomedical Instrumentation	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	- Lab Practice	-	2	-	-	1	-	1

Sub Code	Subject Name	Examination scheme Internal Assessment End				Term work	Pract. And oral	Oral	Total
		Test1	Test2	Avg.	Exam				
ISL702	Biomedical Instrumentation- Lab Practice	-	-	-	-	25	-	25	50

Subject Code	Subject Name	Credits
ISL702	Biomedical Instrumentation- Lab Practice	1
Course objective	 To make students perform experiments based on the principle and various Biomedical Instruments used for Bio-potential measuremer To develop skills in the design of various biomedical instrum in diagnosis and life-support. 	working of hts ments used
Course Outcome	 Students will be able To measure and identify various Bio-potentials with their specifica To observe and plot various Physiological parameters specifications. To measure the various cardiovascular parameters by Designing circuitry. To realise the circuitry of different life support instruments, like defibrillator. To distinguish between the various medical imaging tech comparing, principle and concept involved in each of the techniqu To describe the significance of electrical safety in biomedical mean 	ations. with their g the related pacemaker, hniques by e. surement.

Syllabus: Same as that of Subject ISC702 Biomedical Instrumentation.

List of Suggested Laboratory Experiments:

Sr. No.	Detailed Content	CO Mapping
1	Demonstration and working of instruments like ECG and PCG.	CO1

2	Demonstration and working of instruments like EMG and EEG.	CO1
3	Study of electrodes for various biomedical applications.	CO1
4	To measure Blood pressure by indirect method.	CO2
5	To study Pacemaker and various waveforms or Design and implement pacemaker circuit.	CO4
6	To study Defibrillator and voltage waveforms or Design and implement Defibrillator circuit.	CO4
7	Design of ECG amplifier and testing of gain frequency response with weak input signal.	CO3
8	To design and implement ECG signal conditioning circuits with different parameter.	CO3
9	To design and implement EMG Quantification circuit.	CO2
10	To study Hemodialysis, Heart/Lung machine based models.	CO4
11	ECG simulation on PC / Microcontroller.	CO3
12	Study of working of pulse oxymeter / Heart rate meter.	CO3
13	To study respiration rate meter / respiration parameter measurement.	CO2
14	Study on Medical Imaging Techniques	CO5
15	Study on Electrical Safety	CO6

Any other additional experiment based on syllabus which will help students to understand topic/concept

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 08 experiments from the above given list and 02 assignments from imaging techniques module and electrical safety module.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/Assignments) : 10 Marks Laboratory work (programs / journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL703	Industrial Automation-	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Lab Practice	-	02	-	-	1	-	1

					Examina	tion scher	ne					
Sub Code	Subject Name	Inter Test1	nal Asses Test2	ssment Avg.	End sem exam	Term work	Pract. And oral	Oral	Total			
ISL703	Industrial Automation- Lab Practice	-	-	-	-	25	-	25	50			

Subject Code	Subject Name	Credits				
ISL703	Industrial Automation -Lab Practice	1				
Course objective	1. To give the students fundamentals of automation ar	nd various				
	automation systems used in industry such as PLC, DCS, and	l SCADA.				
	2. To impart the knowledge about the architecture, workin	g of PLC,				
	DCS and SCADA					
	3. To make the students capable to apply knowledge to identif	y hardware				
	and software requirements of PLC, DCS and SCADA					
	. To give the students a comprehension of the aspects related to Safety					
	Instrumented system (SIS).					
Course Outcome	The students will be able to					
	1. Describe automation, need, importance and applications in	industry.				
	2. Identify components of PLC, and develop PLC lac	lder using				
	instructions of PLC and design PLC based application	by proper				
	selection and sizing criteria					
	3. Explain evolution and architecture of DCS, hierarchical	control in				
	DCS, programming DCS through Function Block Diagr	am (FBD)				
	method.					
	4. Describe SCADA architecture, communication in SC	ADA and				
	develop any application based on SCADA along with	GUI using				
	SCADA software.					
	5. Explain database and alarm management system					
	6. Recognize the need of SIS and describe risk reduction meth	ods.				

Syllabus: Same as that of Subject ISC703 Industrial Automation.

List of Laboratory Experiments/Assignments:

Sr. No.	Detailed Content	CO Mapping
1.	Processing of sensor signals by the PLC to drive various end effectors such as pneumatic/electric/hydraulic	CO2
2.	PLC programs for process control applications (minimum 4 nos)	CO2
3.	DCS programming using Function block diagram method	CO3
4.	GUI development for any one application using SCADA software.	CO4
5.	Assignment/Exercise based on Automation Fundamentals	CO1
6.	Assignment/Exercise based on DCS	CO3
7.	Assignment /Exercise based on SCADA	CO4
8.	Assignment/Exercise based on Database and Alarm management	CO5
9.	Assignment/Exercise based on Safety Instrumented System	CO6

Any other additional experiment based on syllabus which will help students to understand topic/concept

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 4 experiments and 4 assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/Assignments): 10 Marl
--

- Laboratory work (programs / journal) : 10 Marks
- Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
	Image	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISL704	Processing-Lab Practice	-	2	-	-	1	-	1

Sub	Subject Name	Examination scheme							
Code						Term	Pract.	Oral	Total
		Intern	al Assess	ment	End sem	work	and		
					Exam		Oral		
		Test1	Test2	Avg.					
ISL704	Image	-	-	-	-	25	-	25	50
	Processing-Lab								
	Practice								

Subject Code	Subject Name	credits				
ISL704	Image Processing-Lab Practice	1				
Course objectives	1. Familiarize with computer simulation software for Image processing and its					
	analysis and basic Image operations.					
	2. To Study the Fourier and Cosine transformation of images in the simulation					
	platform and display the result					
	3. Write advanced image processing algorithms such as Image enhancement,					
	Image restoration by using computer simulations.					
	4. Develop program for extract the features of images by segmentation and image					
	morphology.					
Course	Students will be able to -					
Outcomes	1. Simulate various operations on Images.					
	2. Perform Discrete Fourier transform and Discrete Cosine transform	n on Image.				
	3. Perform Image enhancement techniques.	C				
	4. Perform morphological operations on images and display the result	lt.				
	5. Implement Image compression techniques.					
	6. Implement restoration techniques on degraded images.					

Syllabus same as that of subject ISDLO7031 Image Processing

List of Laboratory Experiments:

Sr. No.	Detailed Contents	СО
		mapping
1	Basic Image operations such as Reading, Displaying, Writing, Flipping,	CO1
	Cropping Images. Introduction to M file, Basic Matrix operations.	
2	Spatial transformation of images like Translation, Rotation and Scaling.	CO1
3	Compute and visualize 2-D DFT, DCT of Images.	CO2

4	Point processing operations like Image negative, brightness adjustment, contrast stretching, Threshold, Log transformation, Power law transformations, Gray level slicing with or without background.	CO3
5	Image Enhancement techniques by arithmetic and logic operations.	CO3
6	Generate and plot Image Histogram and Histogram Equalization.	CO4
7	Image Analysis and interpret the result by using Spatial filter.	CO5
8	Image smoothing and Sharpening in frequency domain.	CO5
9	Implementing Image acquisition and degradation process by different noises and	CO5
10	Edge detection by using Robert operator, Prewitt operator, Sobel operator and compare the result.	CO6
11	Morphological operation of Images like Dilation, Erosion, Opening, Closing, Boundary Detection.	CO6
12	Image segmentation such as point, line, edge detection.	CO6

Any other additional experiments based on syllabus which will help students to understand topic/concept.

Note: Students can use any Computer simulation software programing platform like MATLAB/SCILAB.

Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of Eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teach	ing schen	ne	Credit assigned			
code ISL704	Digital Control System-Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Practice	_	2	-	_	1	-	1

		Examination scheme									
Sub					1	Term	Pract.				
Code	Subject Name	Inter	nal Asses	sment	End sem Exam	work	and Oral	Oral	Total		
		Test1	Test2	Avg.							
	Digital Control										
ISL704	System- Lab	-	-	-	-	25	-	25	50		
	Practice										

Subject Code	Subject Name	Credits					
ISL704	Digital Control System-Lab Practice	1					
Course objective	1. The students should be able to determine response of ZOH and FO	Η					
	2. The students should be able to descretize continuous data system.						
	3. The students will be able to represent given system into different canonical						
	form.						
	4. The students should able to determine state transition matrix						
	5. Students can be able to design controller and observer						
Course Outcome	Students will be able to -						
	1. Understand the difference in response with reconstruction due to 2 FOH.	ZOH and					
	2. Discretize the analog systems and signals with different methods						
	3. Design controller and observer for the given system.						
	4. Demonstrate their knowledge to obtain different canonical forms an and verify using simulation software.	alytically					
	5. Determine state transition matrix using simulation software and v results analytically	verify the					
	6. Measure and record the experimental data, analyze the results, and formal laboratory report.	prepare a					

Syllabus same as that of subject ISDLO7032 Digital Control System

List of Laboratory Experiments:

C. No	Deteiled Contents	СО
Sr. NO.	Detailed Contents	Mapping
1	To determine response of zero order hold and first order hold using simulation software	CO1
2	Mapping from S- plane to Z-plane analytically and verification using simulation software	CO2
3	Discretization of continuous data system using i) Step invariance method, ii) Impulse invariance method, and iii) Bilinear transformations, analytically and verification using simulation software	CO3
4	To represent given system in different canonical forms, analytically and verification using simulation software	CO4
5	To determine pulse transfer function of a given system analytically and its verification using simulation software	CO4,CO6
6	Determination of state transition matrix analytically and its verification using simulation software	CO5,CO6
7	To check controllability and observability of a given system analytically and verify the result using simulation software.	CO3,CO6
8	To design the controller by any method	CO3
9	To design an observer by any method	CO3

Any other additional experiments based on syllabus which will help students to understand topic/concept.

Note: Student can use simulation software such as MATLAB, MATHCAD, SCILAB or any other open source software.

Oral Examination:

Oral examination will be based on entire syllabus

Term Work:

Term work shall consist of Eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject Code	Subject Name	Teacl	hing Schei	me		Credits A	Assigned	
ISI 70 <i>4</i>	Advanced Microcontroller	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Systems- Lab Practice	-	2	-	-	1	-	1

Sub	Subject Name	Examination scheme									
Code		Internal Assessment			End	Term	Pract	Oral	Total		
		Test 1	Test 2	Avg.	Sem	work	and				
					Exam		Oral				
ISL704	Advanced	-	-	-	-	25	-	25	50		
	Microcontroller										
	Systems- Lab										
	Practice										

Subject Code	Subject Name	Credits
ISL704	Advanced Microcontroller Systems- Lab Practice	1
Course objectives	 To explain the fundamentals of PIC 18F Microcontroller and system. To discuss and explain the integrated hardware of the PIC 18F Mic 3. To illustrate various programming tools and development of assembly and higher level language. To examine and design, interfacing of PIC 18F Microcontroller peripheral devices such as LCD, keyboard, ADC, DAC etc. To design applications using learned concepts of hardware interfacing. To describe the working of RTOS and related tasks. 	working of the crocontroller software using er with different e, software and
Course Outcomes	 The students will be able to: Simulate, Analyze and develop programs using assembly lange Simulate, Analyze and develop programs using embedded C Develop program to use PIC18 integrated peripherals. Design and Develop programs for interfacing of external components with PIC 18F Microcontroller. Design and develop sophisticated application using the P peripherals and external peripherals Show the uses and features of RTOS 	uage. ernal peripheral PIC18 integrated

Syllabus: Same as that of Subject ISDLO7033 Advanced Microcontroller Systems.

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
	To develop accomply program	C01
1.	To develop assembly program	COI
2.	To develop embedded C program	CO2
3.	To develop a program for generating square wave on port pin with and without timer.	CO3
4.	To develop a program for interfacing 7 segments displays with PIC18	CO4
5.	To develop a program for interfacing LCD display with PIC18	CO4
6.	To develop a program for interfacing keyboard with PIC18	CO4
7.	To develop a program for Serial Communication with PC.	CO3

8.	To develop a program for interfacing DAC and its application.	CO4
9.	To develop a program for implementing RTC.	CO3
10.	To develop a program for Speed control of DC Motor	C05
11.	To develop a program for temperature measurement.	C05
12.	To develop a program for Stepper motor control	C05
13.	To develop a program for implementing PID controller.	C05
14.	Assignment on understanding operation of integrated peripherals	CO5
15.	Case study on various types of RTOS	CO6

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments): 10 Marks

Laboratory work (programs / journal) : 10 Marks

Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

Sub code	Subject Name	Teachin	g Scheme	(Hrs)		Credits A	ssigned	
ISL704	Mechatronics	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		-	2	-	-	1	-	1

			Examination Scheme									
Sub		1	Theory(ou	ıt of 100)		Droot					
code	Subject Name	Interna (0	al Assess out of 20)	ment	End Sem.	Theory	And Oral	Oral	Total			
		Test 1	Test 2	Avg.	Exam		Ulai					
ISL704	Mechatronics	-	-	-	-	25	-	25	50			

Subject Code	Subject Name	Credits			
ISL704	Mechatronics Lab	1			
Course Objectives	 To present architecture of the mecha To study on broad spectrum the cha electrical actuators and their selectio Development of process plan and ter systems. 	tronics system design racteristics of the mechanical and n for mechatronic systems. mplates for design of mechatronic			
Course Outcomes	 The students will be able to Apply the concept of system modeling Calculate performance characteristics of sensors Learn the working of actuators for a mechatronic system. Design feedback and intelligent controllers Describe mechatronics system validation Integrate the components in mechatronics system 				

Syllabus: Same as that of Subject ISDLO7034 Mechatronics.

List of Laboratory Experiments/ Assignments:

Sr.	Detailed Content	CO Mapping
No.		
1	Modeling and simulation of basic electrical, hydraulic and pneumatic systems	CO1
	using any virtual instrumentation software like LabVIEW.	
2	Calculate static and dynamic characteristics of position/force/tactile sensors	CO2
3	Design of circuits with logic sequence using Electro pneumatic trainer kits.	CO3
4	Simulation of basic Hydraulic, Pneumatic and Electric circuits using any software	CO3

F	Electro proventio applications using DLC	CO^2
5	Electro pneumatic applications using PLC	COS
6	Speed Control of AC & DC drives	CO3
7	Servo controller interfacing for DC motor	CO4
8	PID controller interfacing	CO4
9	Implementation of fuzzy controller for level or temperature control	CO4
10	Stepper motor interfacing with Micro controller (i) Full step resolution (ii) half step resolution	CO4
11	Assignment on Components based modular design and system validation	CO5
12	Computerized data logging system with control for process variables like pressure, flow and temperature.	CO6
13	Case study on any one mechatronics system	CO6

Any other additional experiments / case studies based on syllabus which will help students to understand topic/concept.

**Industry visit is advised to understand the Mechatronics subject.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum seven experiments and 01 case study.

The distribution of marks for term work shall be as follows:

Laboratory	work (E	xperime	nts/assignn	nents)	: 10 Marks
Laboratory	work (pr	rograms	/ journal)		: 10 Marks
Attendance					: 5 Marks
1 101			0		

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work

Subject Code	Subject Name	Teaching Scheme			me Credits Assigned			
ISL704	Building Automation-	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Lab Practice	-	2	-	-	1	-	1

Sub	Subject Name	me Examination scheme							
Code		Internal Assessment			End Term		Pract.	Oral	Total
		Test 1	Test 2	Avg.	Sem Exam	work	and Oral		
ISL704	Building Automation- Lab Practice	-	-	-	-	25	-	25	50

Subject Code	Subject Name	credits			
ISL704	Building Automation Lab Practice	1			
Course objectives	 To brief students with origin and evolution of bui automation. To train them with architecture and operation of BAS. To facilitate them for designing automation system for intellig building. Develop technique for preparation of various documents requidesign requirement of safety building. 	lding gent ired for			
Course Outcomes	 The students will be able to: 1. Explain the concept of intelligent building and BAS. 2. Select the hardware and design of HVAC in building automation system. 3. Discuss the concept of energy management system. 4. Design and implement the safety system for building. 5. Design security and video management system for building. 6. Design and integrate the different system in BAS. 				

Syllabus: Same as that of Subject ISDLO7035 Building Automation.

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
1	Assignment on intelligent building.	CO1
2	Assignment on BAS.	CO1
3	Assignment on HVAC.	CO2
4	Assignment on Direct Digital Control of an HVAC system.	CO2
5	Assignment on BACnet and its features.	CO2
----	--	----------
6	Assignment on lighting- control systems.	CO3
7	Assignment on fire alarm systems.	CO4
8	Assignment on access Control System.	CO5
9	Assignment on CCTV systems.	CO5
10	Assignment on building system integration.	CO6
11	Case study – Intelligent building of hospital/hotel/airport.	CO1, CO2

Any other experiments/assignments based on syllabus which will help students to understand topic/concept.

• Visit to intelligent building of hotel/hospital/airport is advised to understand the Building Automation subject.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments)	:	10	Marks
Laboratory work (programs / journal)	:		10	Marks
Attendance	:	5	Ma	arks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching	scheme		Credit assigned			
ISL705	Project-I	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		- 6 -		-	-	3	-	3

Sub	Subject	Examination scheme									
Code	Name	Theory (o	ut of 100)		Term	Pract	Oral	Total		
		Internal Assessment			End	work	. and				
		Test1	Test2	Avg.	sem		Oral				
					Exam						
ISL705	Project-I	-	-	-	-	50	-	50	100		

Term Work:

The final year students have already under gone project assignment in their third year in Mini Project I and II. In final year, group of maximum **four** students will be completing a comprehensive project work based on the courses studied. The project work may be internally assigned or externally assigned by the research institutes and industry etc. Each group will be assigned one faculty as a supervisor. This project work in final year may be extension of the Mini Project work done in third year.

The main intention of project work is to enable students to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The project work may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be

- Learning additional skills
- Development of ability to define, design, analysis and implementation of the problem and lead to its accomplishment with proper planning
- Learn the behavioral science by working in a group
- The project area may be selected in which the student intend to do further education and/or may be either intend to have employment or self employment
- The topic of project should be different and/or may be advancement in the same topic of Mini Project
- The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of project work.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

AC 11/05/2017 Item No. 4.187A

From Co-coordinator's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated, and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai, has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's), course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of Studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enable a much-required shift in focus from teacher-centric to learner-centric education. Since the workload estimated is based on the investment of time in learning, not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes. Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. **Choice Based Credit and Grading System** were implemented for First Year of Engineering (Undergraduate) from the academic year 2016-2017. Subsequently this system will be carried forward for Second Year of Engineering (Undergraduate) in the academic year 2017-2018 and so on.

Dr. Suresh K. Ukarande Coordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Preamble:

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and to achieve recognition of the institution or program meeting certain specified standards. The main-focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a student will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as a Chairman, Board of Studies in Instrumentation Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Instrumentation Engineering, more than ten senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs and POs of undergraduate program in Instrumentation Engineering are listed below;

Program Educational Objectives (PEOs)

- Graduates will have successful career in industry or pursue higher studies to meet future challenges of technological development.
- Graduates will develop analytical and logical skills that enable them to analyze and design Instrumentation and Control Systems.
- Graduates will achieve professional skills to expose themselves by giving an opportunity as an individual as well as team.
- *Graduates will undertake research activities in emerging multidisciplinary fields.*

Program Outcomes (POs)

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Dr. S. R. Deore, Chairman, Board of Studies in Electrical Engineering, Member - Academic Council University of Mumbai

Program Structure for SE Instrumentation Engineering University of Mumbai (With Effect from 2017-18)

Scheme for Semester III

Course	Course Name	Te (C	aching Sche Contact Hou	eme rs)	Credits Assigned				
Code	Course Ivanie	Theory	Practical	Tutorial	Theory	Practic al	Tutori al	Total	
ISC301	Applied Mathematics – III	4	-	1	4		1	5	
ISC302	Analog Electronics	4	-	-	4	-	-	4	
ISC303	Transducers – I	4	-	-	4	-	-	4	
ISC304	Digital Electronics	4	-	-	4	-	-	4	
ISC305	Electrical Networks and Measurement	4	-	1	4	-	1	5	
ISL301	Object Oriented Programming and Methodology	-	4#	-	-	2	-	2	
ISL302	Analog Electronics Lab practice	-	2	-	-	1	-	1	
ISL303	Transducer-I Lab Practice	-	2	-	-	1	-	1	
ISL304	Digital Electronics Lab practice	-	2	-	-	1	-	1	
Total		20	10	02	20	05	02	27	

Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

				Total			
	Course Name						Marks
		The	eory				
Course Code		End Sem Exam (ESE)	Internal Assessment (IA)	Term Work	Oral	Pract. & Oral	
		Max	Max	Max	Max	Max	
		Marks	Marks	Marks	Marks	Marks	
ISC301	Applied Mathematics-III	80	20	25	-	-	125
ISC302	Analog Electronics	80	20	-	-	-	100
ISC303	Transducer –I	80	20	-	-	-	100
ISC304	Digital Electronics	80	20	-	-	-	100
ISC305	Electrical Networks and Measurement	80	20	25	-	-	125
ISL301	Object Oriented Programming and Methodology	-	-	50	-	25	75
ISL302	Analog Electronics Lab Practice	-	-	25	-	25	50
ISL303	Transducer-I Lab Practice	-	-	25	-	25	50
ISL304	Digital Electronics Lab Practice	-	-	25	-	-	25
	Total	400	100	175	-	75	750

Note: As per above Examination Scheme, the Minimum marks are as follows –

Max. Marks	Min. marks
80	32
50	20
25	10
20	8

Program Structure for SE Instrumentation Engineering University of Mumbai (With Effect from 2017-18)

Scheme for Semester IV

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practic al	Tutorial	Theory	Practical	Tutorial	Total
ISC401	Applied Mathematics – IV	4	-	1	4	-	1	5
ISC402	Transducers –II	4	-	-	4	-	-	4
ISC403	Feedback Control system	4	-	-	4	-	-	4
ISC404	Analytical Instrumentation	3	-	-	3	-	-	3
ISC405	Signal Conditioning Circuit Design	4	-	-	4	-	-	4
ISL401	Application Software Practice	-	4#	-	-	2	-	2
ISL402	Transducer-II Lab Practice	-	2	-	-	1	-	1
ISL403	Feedback Control systems Lab Practice	-	2	-	-	1	-	1
ISL404	Analytical Instrumentation Lab Practice	-	2	-	-	1	-	1
ISL405	Signal Conditioning Circuit Design Lab Practice	-	2	-	-	1	-	1
Total		19	12	01	19	06	01	26

Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

			Exam	ination Scl	neme		
		Th	eory				
Course Code	Course Name	End sem Exam (ESE)	Internal Assessment (IA)	Term Work	Oral	Pract./ Oral	Total Marks
		Max Marks	Max Marks	Max Marks	Max Marks	Max Marks	
ISC401	Applied Mathematics – IV	80	20	25	-	-	125
ISC402	Transducers –II	80	20	-	-	-	100
ISC403	Feedback Control System	80	20	-	-	-	100
ISC404	Analytical Instrumentation	80	20	-	-	-	100
ISC405	Signal Conditioning Circuit Design	80	20	-	-	-	100
ISL401	Application Software Practice	-	-	50	-	25	75
ISL402	Transducer-II Lab Practice	-	-	25	-	25	50
ISL403	Feedback Control Systems Lab Practice	-	-	25	25	-	50
ISL404	Analytical Instrumentation Lab Practice	-	-	25	25		50
ISL405	Signal Conditioning Circuit Design Lab Practice	-	-	25	-	25	50
	Total	400	100	175	50	75	800

Note: As per above Examination Scheme, the Minimum marks are as follows -

Max. Marks	Min. marks
80	32
50	20
25	10
20	8

Course Code	Course Name	Teaching (Contact	g Schem t HOUR	e S)	Credit Assigned			
ISC301	Applied Mathematics - III	Theory 4	Pract. -	Tut. 1	Theory 4	TW/Pract. -	Tut 1	Total 5

Sub	Subject Name	Exami	Examination scheme								
Code		Theory (out of 100)				Term	Pract.	Oral	Total		
		Internal Assessment En				work	and				
		Test1	Test2	Avg.	sem		Oral				
					Exam						
ISC301	Applied	20	20	20	80	25	-	-	125		
	Mathematics -										
	III										

Subject Code	Subject Name	credits					
ISC301	Applied Mathematics - III	5					
Course objectives	 To build the strong foundation in Mathematics of stude for the field of Instrumentation Engineering. To provide students with mathematics fundamentals ne formulate, solve and analyses complex engineering pr To prepare student to apply reasoning informed by the knowledge to engineering practice. To provide opportunity for students to work as part of multi-disciplinary projects 	 To build the strong foundation in Mathematics of students needed for the field of Instrumentation Engineering. To provide students with mathematics fundamentals necessary to formulate, solve and analyses complex engineering problems. To prepare student to apply reasoning informed by the contextual knowledge to engineering practice. To provide opportunity for students to work as part of teams on multi-disciplinary projects 					
Course Outcomes	 The students will be able to – 1. Demonstrate basic knowledge of Laplace Transform. 2. Obtain the time response of systems using inverse Laptransform. 3. Find the Fourier series, Complex form of Fourier series. Integral and Fourier transform of the functions. 4. Study the differential vector algebra and its properties. 5. Study vector line integral and theorems in plane and su 6. Check for analytical functions and find the analytical f and study the mapping. 	lace s, Fourier urface. unction					

Details of Syllabus:

Prerequisite: Knowledge of Matrix algebra, Differentiation, Integration, Probability, and Series expansion.

Module	Contents	Hrs.	CO
			mapping
1	Lonloss Transform	0	CO1
1	Laplace Transform (I.T) of Standard Functions. Definition	0	COI
	of Laplace transform. Condition of Existence of Laplace		
	transform, Laplace transform of		
	En Contraction of Con		
	formulas). Heaviside unit step function. Dirac-delta function		
	(No Proof of formula), Laplace transform of Periodic function		
	(Proof of formula)		
	Properties of Laplace Transform: Linearity, first shifting		
	theorem, second shifting theorem multiplication by t^n ,		
	Division by <i>t</i> , Laplace Transform of derivatives and integrals,		
	change of scale, convolution theorem, Evaluation of integrals		
	using Laplace transform. (No proof of any property)		
2	Inverse Laplace Transform: Partial fraction method, Method	5	CO2
	of convolution, Laplace inverse by derivative		
	Applications of Laplace 1 ransform: Solution of ordinary differential equations. Solving DLC eigenit differential		
	equation using Laplace transform of first order and second		
	order only (not framing of differential equation)		
3	Fourier Series	12	CO3
-	Introduction: orthogonal and orthonormal set of functions,		
	Definition, Dirichlet's conditions, Euler's formulae		
	Fourier Series of Functions: Exponential, trigonometric		
	functions of any period =2L, even and odd functions, half		
	range sine and cosine series		
	Complex form of Fourier series, Fourier integral		
	representation, Fourier Transform and Inverse Fourier		
	transform of constant and Exponential function, Fourier sine		
1	Voctor Algobro	7	<u> </u>
-	Scalar and Vector Product: Scalar and vector product of	/	04
	three		
	and four vectors and their properties (Only introduction, No		
	question to be asked)		
	Vector Differentiation: Gradient of scalar point function,		
	divergence and curl of vector point function		
	Properties: Solenoidal and irrotational vector fields,		
-	conservative vector field		
5	Vector Integral: Line integral	6	CO5
	Green s theorem in a plane (verification question can be asked). Gauss' divergence theorem and Stakes' theorem (Na		
	asked), Gauss divergence medicin and Stokes medicing (No question on Verification to be asked)		
	question on vermeation to be asked)		

6	Complex Variable	10	CO6
	Analytic Function: Necessary and sufficient conditions (No		
	Proof), Cauchy Reiman equation Cartesian form (No Proof)		
	Cauchy Reiman Equation in polar form (with Proof), Milne		
	Thomson Method and its application, Harmonic function,		
	orthogonal trajectories		
	Mapping: Conformal mapping, bilinear transformations, cross		
	ratio, fixed points, bilinear transformation of straight lines and		
	circles		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 Marks.

2. Total 4 questions need to be solved.

3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.

4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term Work:

Term work shall consist of minimum three simulations and four tutorials from the above list. The distribution of marks for term work shall be as follows:

Laboratory work (Tutorials)	: 10 Marks	
Laboratory work (programs / journal)	: 10 Marks	
Attendance	: 5 Marks	
	0 1	

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Text books:

1. H.K. Das, "Advanced engineering mathematics", S . chand , 2008

2. A. Datta, "Mathematical Methods in Science and Engineering", 2012

3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication

Reference Books:

- 1. B. S. Tyagi, "Functions of a Complex Variable," Kedarnath Ram Nath Publication
- 2. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication
- 3. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition
- 4. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc

5. Murry R. Spieget, "Vector Analysis", Schaum's outline series, Mc-Graw Hill Publication

Subject	Subject Name	Teaching scheme			Credit assigned			
ISC302	Analog	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Electronics	4	-	-	4	-	-	4

Sub	Subject	Examination scheme							
Code	Name	Theory (out of 100)				Term	Pract.	Oral	Total
		Internal Assessment			End	work	and		
		Test1	Test2	Avg.	sem		Oral		
					Exam				
ISC302	Analog	20	20	20	80	-	-	-	100
	Electronics								

Subject Code	Subject Name	Credits				
ISC302	Analog Electronics	4				
Course Objectives	 To familiarize the student with basic electronic devices and circuit To provide understanding of operation of diodes, bipolar and MOS transistors, DC biasing circuits, Transistors as switching device, Power circuits and systems. To introduce the students the basic properties of OpAmp, analysis and design of electronic circuits using OpAmp 					
Course Outcomes	 Students will be able to Explain working of Diode and Zener diode and its applicat Analyze, simulate, and design amplifiers using BJT biasing techniques, frequency response. Analyze circuits using MOSFET. Explain power amplifiers and power supply. Explain op-amp parameters Design various circuits using operational amplifiers. 	ions g				

Details of Syllabus:

Prerequisite: Knowledge of semiconductor theory.

Module	Contents	Hrs.	CO
			mapping
	P-N Junctions diode	4	CO1
1	PN Junction diode small signal model, p-n junction under		
	forward bias and reverse bias conditions, Rectifier Circuits,		
	Clipping and Clamping circuits, Zener diode and its applications.		
2	Bipolar Junction Transistors (BJTs)	11	CO2
	Physical structure and operation modes, Active region operation		
	of transistor, D.C. analysis of transistor circuits		
	Biasing the BJT: Different type of biasing circuit and their		
	analysis. Bias stability, Thermistor compensation, thermal		
	runaway.		
	Basic BJT amplifier configuration, Transistor as a switch.		
	High frequency model of BJT amplifier.		
	Effect of positive and negative feedback, advantages of negative		
	feedback, Feedback Connection Type.		
3	Field Effect Transistor (FET)	11	CO3
	Junction FET, its working and VI characteristic.		
	Enhancement-type MOSFET: structure and physical operation,		
TT	- f Manulai Ladana adadian Engineering Day 2016 17		10

University of Mumbai, Instrumentation Engineering, Rev 2016-17

	current voltage characteristics		
	Depletion-type MOSEET IFET and MOSEET as an amplifier		
	Biasing in IEET and MOSEET amplifiers		
	Basic IEET and MOSEET amplifier configuration: common		
	source common gate and common drain types		
	Source, common gate and common drain types.		
	High frequency model of FE1, Low and High frequency		
4	response of common source amplifier.		
4	Power Amplifiers	6	CO4
	Class A large signal amplifiers, Harmonic distortion,		
	Transformer coupled audio power amplifier, Class B amplifier,		
	Class AB operation, Power BJTs, Regulated power supplies,		
	Series voltage regulator.		
5	Operation Amplifier (Op-amps)	4	CO5
	Ideal Op-amp. Op-amp characteristics, Op-amp feedback		
	analysis.		
6	Applications of Op-amp.	12	CO6
	Practical op-amp circuits: inverting amplifier, non -inverting		
	amplifier, weighted Summation circuit, summation, subtractor,		
	integrator, differentiator.		
	Large signal operation of op-amps		
	Instrumentation amplifier Active filters On-amp as V to I and I		
	to V converter, logarithmic amplifiers, waveform generators.		
	Schmitt triggers comparators		
	Oscillators: Introduction Condition for Oscillation RC phase		
	shift Weinbridge Hartley Colnitts and Crystal controlled		
	oscillator		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. J. Millman and C. C. Halkias, Integrated Electronics: Analog and Digital Circuits and Systems, Tata McGraw-Hill Publishing Company, 1988.
- 2. Donald A. Neamen, Electronic Circuit Analysis and Design, Tata McGraw-Hill.

Reference Books:

- 1. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, Eighth edition, PHI publishers, 2004.
- 2. J. Millman and Taub, Pulse and Digital Circuits, Tata McGraw Hill.
- 3. Ramakant A. Gaikwad, Op-amp and Integrated circuits, Fourth edition, PHI Publication, 2002.
- 4. Sergio Franco, Design with Op-amp and Analog Integrated circuits, Tata McGraw Hill Edition, New Delhi.

Subject code	Subject Name	Teaching	scheme		Credit assigned			
ISC303	Transducers –I	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		4	-	-	4	-	-	4

Sub	Subject Name	Examination scheme							
Code		Theory (out of 100)				Term	Pract.	Oral	Total
		Internal Assessment H			End	work	and		
		Test1	Test2	Avg.	sem		Oral		
					Exam				
ISC303	Transducers-I	20	20	20	80	-	-	-	100

Subject Code	Subject Name	Credits						
ISC303	Transducers-I	4						
Course objectives	1. To explain the measurement systems, errors of measurement.							
	2. To provide an understanding of the operation of se transducers.	ensors and						
	 To familiarize the student with the Identification, cla construction, working principle and application of transducers used for Displacement, level, to measurement. 	ssification, of various emperature						
Course Outcomes	The students will be able to							
	1. Explain the measurement systems, errors of measureme	nt						
	2. Explain the working principles of sensors and transduce	ers.						
	3. Discuss the working principle of displacement transc	ducers and						
	their applications.	1						
	4. Discuss the working principle of transducers Temperature measurement, comparative study o transducers.	used for f various						
	5. Explain the working principle of transducers used measurement, comparative study of various transducer applications.	for level s and their						
	6. Identify various transducers in the industry and working of miscellaneous sensors.	understand						

Details of Syllabus:

Prerequisite: Knowledge of basic measurement.

Module	Contents	Hrs.	CO
			Mapping
1	Instrumentation System	4	CO1
	Units and standards of measurement, Introduction, block		
	diagram, functional elements of measurement system, static and		
	dynamic characteristics of transducer, Measurement and		
	calibration systems- Requirement.		
	Error: definition, classification, statistical analysis of errors,		
	Error correction methods.		
2	Courses and Transdoment Definition modules arised	4	CO2
2	Sensor and Iransducer: Definition, working principle,	4	002
	classification (active, passive, primary, secondary, mechanical,		
	electrical, analog, digital), selection criteria, sources of error for		

	parameter under measurement, transducer specifications, test condition and operating conditions.		
3	Displacement Resistance potentiometer: (linear and logarithmic) ricco	10	CO3
	resistance potentionneter. (inical and logarithmic), piezo-		
	function linearity sensitivity source frequency dependence		
	phase null and signal conditioning) Selection and properties of		
	materials for LVDT, and general electromagnetic sensors.		
	Capacitance type transducers: with applications, materials for		
	capacitive, ultrasonic and elastic transducers.		
	Digital transducer: translational and rotary encoders (absolute		
	position and incremental position encoders), Optical and		
	magnetic pickups.		
	Pneumatic transducer: flapper- nozzle transducer.		
	Comparative study for Displacement Transducers.		
4	Temperature transducers:	12	CO4
	Modes of heat transfer, laws of conduction, convection and		
	radiation, Temperature scales, classification of Temperature		
	Sensors, Overview of Temperature Sensor Material.		
	Thermometers: Classification of Thermometers, Construction		
	and working of glass thermometers, liquid expansion		
	thermometer, gas thermometer (filled system thermometer),		
	bimetallic thermometer, solid state temperature sensor,		
	Specifications of Thermometers.		
	Resistance temperature detector (RTD): Principle, types,		
	Configurations, construction and working of RID, Material for		
	RID, Signal Measurement techniques for RID, Comparative		
	Response curves for RTD, 2 wire, swire and 4 wire RTD Element Lead wire Componentian in RTD solf heating affect		
	Specifications advantages disadvantages and applications of		
	RTD.		
	Thermistors: Principle, types (NTC and PTC), characteristics,		
	Construction and working of Inermistor, Materials,		
	specifications of Thermistor, applications.		
	Deltion of thermosour le types of thermosour le with		
	characteristic curve thermocouple table Sensitivity		
	constructional Features of Thermocouples Thermo couple		
	specifications electrical noise and noise reduction techniques		
	cold junction Compensation method, thermopile, thermocouple		
	emf measurement method. Thermo well Material of construction		
	and its specifications.		
	Pyrometers: Principle, Construction and working of Radiation		
	and optical pyrometers and its Applications.		
	Comparative study for Temperature Transducers		
5	Level Transducers	9	CO5
	Need for Level Measurement, Classification of Level		
	Measurement Techniques. Construction and working of Dipstick,		
	displacer, float system, bubbler, capacitive devices for level		
	measurement, ultrasonic level gauge, DP cell, load cell, vibrating		
	type, microwave, radar, radioactive type level gauges, LASER		
	type transducers, fiber optic level sensors, solid level detectors,		
	Intelligent level measuring instruments.		
	Comparative study for Level Transducers		

University of Mumbai, Instrumentation Engineering, Rev 2016-17

6	Miscellaneous Transducers	9	CO6
	Transducers for Position, speed, acceleration, vibration, sound,		
	humidity, and moisture measurement, Hall effect Transducer,		
	Optical sensors (LDR, Photo-diode, photo-transistor) leak		
	detector, flame detector, smoke detector and Proximity sensors.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be a compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.

3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.

4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. B.C Nakra, K.K. Chaudhary, Instrumentation, Measurement and Analysis, Tata McGraw-Hill Education, 01-Oct-2003 Electronic instruments 632 page
- 2. A. K. Sawhney, Puneet Sawhney, A course in Electrical and Electronic Measurement and Instrumentation, Dhanpat Rai and Co. Rai, 1996 -
- 3. Rangan, Mani, Sharma. Instrumentation systems and Devices, 2nd Ed., Tata McGraw Hill.

Reference Books:

1. Doeblin E.D., Measurement system, Tata McGraw Hill., 4th ed, 2003.

2. Bela G. Liptak, Instrument Engineers' Handbook, Fourth Edition, Volume One: Process Measurement and Analysis, June 27, 2003.

3. Neubert Hermann K. P., Instrument Transducer, 2nd ed., Oxford University Press, New Delhi, 2003.

- 4. Johnson Curtis D., Process Control Instrumentation Technology, 8th Ed., 2005
- 5. S.P. Sukhatme, Heat Transfer, 3rd edition, University Press.
- 6. B.E. Jones, Instrument Technology.

7. Chortle Keith R., Fundamentals of Test, Measurement Instrument Instrumentation, ISA Publication.

- 8. Alan S Morris, Measurement and Instrumentation Principles; 3rd Edition
- 9. D. V. S. Murty, 'Transducers and Instrumentation', PHI, New Delhi, 2003

Subject	Subject	Teaching scheme			Credit ass	igned		
code	Name	C			-			
ISC304	Digital	Theory	Pract	Tut.	Theory	Pract.	Tut.	Total
	Electronics	4	-	-	4	-	-	4

Sub	Subject	Examin	Examination scheme						
Code	Name	Theory	Theory (out of 100)			Term	Pract.	Oral	Total
		Internal Assessment En			End	work	and		
		Test1	Test2	Avg.	Sem		Oral		
					Exam				
ISC304	Digital	20	20	20	80	-	-	-	100
	Electronics								

Subject Code	Subject Name	Credits							
ISC304	Digital Electronics	4							
Course objectives	1. To provide an understanding of the principles of	of digital							
	electronics and use of number systems								
	2. To give knowledge about combinational circuits,								
	3. To describe working and design methods of sequential c	ircuits.							
	4. To familiarize with the basics of asynchronous sequenti	al circuits							
	and design techniques.								
	5. To provide understanding of memory devices and state r	nachines.							
	6. To make the students understand basic logic families	6. To make the students understand basic logic families and their							
	applications.								
Course Outcomes	Students will be able to-								
	1. Represent numerical values in various number sys	tems and							
	perform number conversions between different number s	systems.							
	2. Explain operation of logic gates using IEEE/ANSI	standard							
	symbols. Analyze and design, digital combinational circu	uits.							
	3. Analyze and design, sequential logic circuits.								
	4. Analyze and design, asynchronous sequential logic circu	uits.							
	5. Explain nomenclature and technology in memory device	s.							
	6. Analyze logic families and their application to design	the digital							
	system.								

Details of Syllabus:

Prerequisite: Knowledge of number systems and boolean logic

Module	Торіс	Hrs.	СО
	-		Mapping
1.	NUMBER SYSTEMS:	08	CO1
	Binary, Octal, Decimal, Hexadecimal-Number base		
	conversions, complements, signed Binary numbers.		
	Binary Arithmetic- Binary codes: Weighted, BCD, 8421, Gray		
	code, Excess 3 code, ASCII, Error detecting code, code		
	conversion from one code to another		
	Boolean laws, De-Morgan's Theorem, Principle of Duality,		
	Boolean expression, Boolean function, Minimization of		
	Boolean expressions, Sum of Products (SOP), Product of		
	Sums (POS), Minterm, Maxterm, Karnaugh map		
	Minimization, Don't care conditions.		
2.	COMBINATIONAL CIRCUITS:	12	CO2
	LOGIC GATES: AND, OR, NOT, NAND, NOR, Exclusive,		

University of Mumbai, Instrumentation Engineering, Rev 2016-17

	 OR and Exclusive NOR, Implementations of Logic Functions using gates, NAND, NOR implementations, Multi level gate implementations, Multi output gate implementations. Design of combinational circuits, Adders-Subtractors – Serial adder/ Subtractor - Parallel adder/ Subtractor, look ahead carry generator, BCD adder, Magnitude Comparator, Multiplexer/ Demultiplexer, encoder / decoder, parity checker, code converters. Implementation of combinational logic using MUX, DEMUX. 		
3.	SEQUENTIAL LOGIC CIRCUITS Flip flops- SR, D and Master slave JK, T, Characteristic table and equation, Edge triggering, Level Triggering, Realization of one flip flop using other flip flops, Asynchronous / Ripple counters, Synchronous counters, Modulo n counter, shift registers, Universal shift register and its applications, Serial to parallel and parallel to serial converter.	12	CO3
4.	ASYNCHRONOUS SEQUENTIAL CIRCUITS Design of fundamental mode and pulse mode circuits – primitive state / flow table, Minimization of primitive state table, state assignment, Excitation table, Excitation map, cvcles, Races, Hazards: Static –Dvnamic, Hazards elimination.	04	CO4
5.	MEMORY AND PROGRAMMABLE LOGIC DEVICES Classification of memories, RAM organization, Read/Write operation, Memory cycle, Timing waveforms, Memory decoding, memory expansion, Static RAM Cell, Bipolar RAM cell, MOSFET RAM cell, Dynamic RAM cell, ROM organization, PROM / EPROM / EEPROM / EAPROM Programmable Logic Devices –Programmable Logic Array (PLA), Programmable Array Logic (PAL), Introduction to Complex Programmable Logic Device (CPLD), Field Programmable Gate Arrays (FPGA). Introduction to state machine.	08	CO5
6.	LOGIC FAMILIES Basics of digital integrated circuits, basic operational characteristics and parameters. TTL, Schottky clamped TTL, tri-state gate ECL, IIL, MOS devices CMOS comparison of logic families. PMOS, NMOS and E2 CMOS	04	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 Marks.

2. Total 4 questions need to be solved.

3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.

4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

TEXT BOOKS

1. M. Morris Mano, Digital Design, 3.ed., Prentice Hall of India Pvt. Ltd., New Delhi, 2003/Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003

2. John .M Yarbrough, Digital Logic Applications and Design, Thomson- Vikas publishing house, New Delhi, 2002.

REFERENCES

- **1.** S. Salivahanan and S. Arivazhagan, Digital Circuits and Design, 2nd ed., Vikas Publishing House Pvt. Ltd, New Delhi, 2004
- 2. Charles H. Roth. "Fundamentals of Logic Design", Thomson Publication Company, 2003.
- **3.** Donald P. Leach and Albert Paul Malvino, Digital Principles and Applications, 5 ed., Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
- **4.** R.P.Jain, Modern Digital Electronics, 3 ed., Tata McGraw–Hill publishing company limited, New Delhi, 2003.
- 5. Thomas L. Floyd, Digital Fundamentals, Pearson Education, Inc, New Delhi, 2003
- **6.** Donald D. Givone, Digital Principles and Design, Tata Mc-Graw-Hill Publishing company limited, New Delhi, 2003.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISC305	Electrical Networks and	Theo ry	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Measurement	4	-	1	4	-	1	5

Sub	Subject Name	Examination scheme							
Code		Theory (out of 100)				Term	Pract.	Oral	Total
		Internal Assessment End		End	work	and			
		Test1	Test2	Avg.	sem		Oral		
					Exam				
ISC305	Electrical	20	20	20	80	25	-	-	125
	Networks and								
	Measurement								

Subject Code	Subject Name	Credits						
ISC305	Electrical Networks and Measurement	5						
Course objectives	1. To introduce the concept of circuit elements lumped circu	its, circuit						
	laws and reduction.							
	2. To study the concept of coupled circuits.							
	3. To study the transient response of series and parallel A.C. ci	To study the transient response of series and parallel A.C. circuits.						
	To study two port model of circuit and circuit elements.							
	To introduce the concept of network synthesis.							
	6. To study basic analog instruments as well as digital instrume	To study basic analog instruments as well as digital instruments						
	7. To study the measurement of R-L-C							
	Students will be able to -							
Course Outcomes	1. Analyze AC and DC circuits using different theorems.							
	2. Analyze transient and steady-state response of passive	electrical						
	networks.							
	3. Analyze network using poles and zeros and find their parar	neters like						
	Z, Y, and ABCD.							
	4. Synthesize the networks using canonical forms.							
	5. Discuss construction and working principle and applications	s of analog						
	and digital instruments							
	6. Measure electrical parameter like R, L, C using electrical bri	dges.						

Details of Syllabus:

Prerequisite: Knowledge of DC and AC circuit analysis, Three-phase circuit and transformer.

Module	Contents	Hrs	CO Manning
1	Networks Theorems	12	CO1
	Analysis of networks with dependent sources: mesh analysis, nodal analysis, super mesh and super node concept, source transformation technique, superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem. Solution of networks with AC sources, Analysis of coupled circuits (self-inductance, mutual inductance, and dot convention)		
2	Time and Frequency response of circuits	06	CO2
	Voltage/current relations for R, L, C and their equations in time		

	domain. Initial and final conditions, first and second order differential equations, steady state and transient response. Analysis		
	of transient and steady state responses using Classical technique		
3	Network Functions: poles and zeros	08	CO3
	Network functions for one port and two port networks, driving point and transfer functions, ladder network, general network, poles and zeros of network functions, restrictions on Pole and zero locations for driving point functions and Transfer functions, time domain behavior from pole-zero plot. Two-Port parameters		
	Open circuit, Short circuit, transmission and hybrid parameters, relationship between parameter sets, reciprocity and symmetry conditions, parallel connections, parallel connection of two port networks.		
4	Fundamentals of Network Synthesis.	08	CO4
	Causality and stability, Hurwitz polynomials, positive real functions, synthesis of one port networks with two kinds of elements. Properties and synthesis of L-C, R-C, R-L driving point impedances, synthesis of R-L-C functions.		
5	Analog & Digital Meters	08	CO5
	D'Arsonaval galvanometers, PMMC and PMMI instruments. Shunts and multipliers, Construction and working principle of: ammeters, voltmeters, ohmmeters, power factor meter, energy meter, Q meters, analog multimeters. Electronic Voltmeters, Digital Voltmeter and digital multimeter. CRO, Measurement of phase and frequency,DSO		
6	Measurement of R, L, C	06	CO6
	Measurement of medium, low and high resistance, Megger.AC bridges, measurement of self and mutual inductances. Measurement of capacitance. Derivations and numerical related to all bridges.		

Sr. No.	Tutorials	
		Mapping
1	Examples indicating concept of super mesh and super node.	CO1
2	Examples of indicating the application of Thevenin's and Norton's theorem for circuits with dependent sources.	CO1
3	Examples on evaluating the transient and steady-state conditions for a R-L- C series or parallel connections for different values of resistance.	CO2

4	Examples on evaluating the transient and steady-state conditions for a R-L,	CO2
5	Examples for finding different perspectors of two port networks	CO3
5	Examples for finding different parameters of two port networks	005
6	Examples on Hurwitz Polynomial. Necessary and sufficient condition for	CO4
	Positive real function.	
7	Examples on realization of R-L, R-C, L-C functions.	CO4
8	Examples on synthesis of R-L-C function.	CO4
9	Testing /measurement of R-L-C using analog/digital multimeter	CO5
10	Applications of CRO (Measurements of phase and frequency).	CO5
511	Study of DVM.	CO5
12	Measurement of medium value resistance using bridge.	CO6
13	Measurement of Inductance using bridge.	CO6
14	Measurement of Capacitance using A.C. Bridges.	CO6

Term Work:

Term work shall consist of minimum three simulations and four tutorials from the above list. The distribution of marks for term work shall be as follows:

Laboratory work (Tutorials)	: 10 Marks
Laboratory work (programs / journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 Marks.

2. Total 4 questions need to be solved.

3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.

4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

1. Kuo Franklin F., Network analysis and synthesis, 1st ed., Wiley International, 1962.

University of Mumbai, Instrumentation Engineering, Rev 2016-17

- 2. Van Valkenburg M.E., Network analysis, 3rd ed., Eastern Economy Edition, 1983.
- 3. A. K. Sawhney, Puneet Sawhney, A course in Electrical and Electronic Measurement and Instrumentation, Dhanpat Rai and Co. Rai, 1996.

Reference Books:

- 1. Roy Chaudhary D., Network and systems, Wiley Eastern Limited, 1991.
- 2. Hayt William, KemmerlyJr.Jack E., Engineering circuit Analysis, 6th ed., Tata McGraw Hill, New Delhi 2002.
- 3. Edminister Joseph A., NahviMohmood, Electric Circuits, 3rd ed., Tata McGraw Hill New Delhi 1999.
- 4. Shyammohan Sudhakar, Circuits and Networks Analysis and Synthesis, 13th reprint, Tata McGraw Hill, 2000
- 5. Bruce Carsion A., Circuits, Brooks/Cole Thomson Learning, 2000.
- 6. DavArtice M., Linear Circuits Analysis, PWS Publishing Company, 1998.
- 7. Alexander Charlesk, Mathew N.O., Sadlku, Fundamentals of Electric Circuits, McGraw Hill, 2000.

8. Cooper W.D., Helfrick A.D., Electronic Instrumentation and Measurement Techniques, Prentice Hall of India Limited, New Delhi.

- 9. Rathore-Narosa T. S., Digital Measurement Techniques.
- **10**.Oliver and Cage, Modern Electronic Measurements and Instrumentation, MGH.

11.Bouwens A. J., Digital Instrumentation, MGH.

12. Technical Manuals of DSO: APLAB, Scientific, HP etc.

13.Technical Manuals for Virtual CRO.

Sub	Subject Name	Exar	Examination scheme						
Code		Internal			End	Term	Pract.	Oral	Total
		Assessment			Sem	work	and		
				Exam		Oral			
				-					
ISL301	Object Oriented	-	-	-	-	50	-	25	75
	Programming and								
	Methodology								

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
ISL301	Object Oriented	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	and Methodology	-	4#	-	-	2	-	2

out of four hours two hours theory shall be taught to entire class and two hours practical in batches

Subject Code	Subject Name	Credits
ISL301	Object Oriented Programming and Methodology	2
Course Objectives	 To learn the object-oriented programming concepts To study various java programming constru- multithreading, exception handling, packages etc. To explain components of GUI based programming 	ucts like
Course Outcomes	 The students will be able to: 1. Apply fundamental programming constructs. 2. Illustrate the concept of packages, classes and objects. 3. Elaborate the concept of strings arrays and vectors. 4. Implement the concept of inheritance and interfaces. 5. Implement the notion of exception handling and multiple. 6. Develop GUI based application 	threading.

Details of Syllabus:

Prerequisite: Structured Programming Approach

Module	Contents	Hrs	CO
			Mapping
1	Introduction to Object Oriented Programming	02	CO1
	OO Concepts: Object, Class, Encapsulation, Abstraction,		
	Inheritance, Polymorphism.		
	Features of Java, JVM		
	Basic Constructs/Notions: Constants, variables and data		
	types, Operators and Expressions, Revision of Branching and		
	looping		

2	Classes, Object and Packages	05	CO2
	Class, Object, Method.		
	Constructor, Static members and methods		
	Passing and returning Objects		
	Method Overloading, Packages in Java, creating user defined		
	packages, access specifiers.		
3	Array, String and Vector	04	CO3
	Arrays, Strings, String Buffer, Wrapper classes, Vector		
4	Inheritance and Interface	03	CO4
	Types of Inheritance, super keyword, Method Overriding,		
	abstract class and abstract method, final keyword,		
	Implementing interfaces, extending interfaces		
5	Exception Handling and Multithreading	04	CO5
	Error vs Exception, try, catch, finally, throw, throws, creating		
	own exception, Thread lifecycle, Thread class methods,		
	creatingthreads, Synchronization		
6	GUI programming in JAVA	06	CO6
	Applet: Applet life cycle, Creating applets, Graphics class		
	methods, Font and Color class, parameter passing.		
	Event Handling: Event classes and event listener		
	Introduction to AWT: Working with windows, Using AWT		
	controls- push Buttons, Label, Text Fields, Text Area, Check		
	Box and Radio Buttons.		

Text books:

1. Herbert Schildt, 'JAVA: The Complete Reference', Ninth Edition, Oracle Press.

2. Sachin Malhotra and Saurabh Chaudhary, "Programming in Java", Oxford University Press, 2010

Reference Books:

- 1. Ivor Horton, 'Beginning JAVA', Wiley India.
- 2. Dietal and Dietal, 'Java: How to Program', 8/e, PHI
- 3. 'JAVA Programming', Black Book, Dreamtech Press.

List of Laboratory Experiments/ Assignments:

Sr.	Detailed Contents	СО
No.		mapping
1.	Program on various ways to accept data through keyboard and unsigned right shift operator	CO1
0		001
2.	Program on branching, looping, labelled break and labelled continue.	COI
3.	Program to create class with members and methods, accept and display details for single object.	CO2
4.	Program on constructor and constructor overloading	CO2
5.	Program on method overloading	CO2

University of Mumbai, Instrumentation Engineering, Rev 2016-17

6.	Program on passing object as argument and returning object	CO2
7.	Program on creating user defined package	CO2
8.	Program on 1D array	CO3
9.	Program on 2D array	CO3
10.	Program on String	CO3
11.	Program on String Buffer	CO3
12.	Program on Vector	CO3
13.	Program on single and multilevel inheritance (Use super keyword)	CO4
14.	Program on abstract class	CO4
15.	Program on interface demonstrating concept of multiple inheritance	CO4
16.	Program on dynamic method dispatch using base class and interface reference.	CO4
17.	Program to demonstrate try, catch, throw, throws and finally.	CO5
18.	Program to demonstrate user defined exception	CO5
19.	Program on multithreading	CO5
20.	Program on concept of synchronization	CO5
21.	Program on Applet to demonstrate Graphics, Font and Color class.	CO6
22.	Program on passing parameters to applets	CO6
23.	Program to create GUI application without event handling using AWT controls	CO6
24.	Program to create GUI application with event handling using AWT controls	CO6
25.	Mini Project based on content of the syllabus. (Group of 2-3 students)	CO1-CO6

Term Work:

Students will submit term work in the form of journal that will include:

- 1. At least 20 programs and mini project
- 2. Two assignments covering whole syllabus
- 3. Class test based on the above syllabus.

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

The distribution of marks for term work shall be as follows:

Total: 50 Marks (Total Marks) : 20 marks (Experiments), 10 marks (Mini Project), 05 marks (Assignments), 10 marks (Class Test), 05 marks (Attendance)

Practical and oral examination will be based on the suggested experiment list and the entire syllabus.

Subject	Subject	Teaching scheme			Credit assigned			
code	Name							
ISL302	Analog	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Electronics	-	02	-	-	1	-	1
	Lab							
	Practice							

Sub	Subject	Examination scheme							
Code	Name					Term	Pract.	Oral	Total
		Internal Assesment End			End	work	And		
		Test1	Test2	Avg.	sem		oral		
					exam				
ISL302	Analog	-	-	-	-	25	25	-	50
	Electronics								
	Lab								
	Practice								

Subject Code	Subject Name	Credits
ISL302	Analog Electronics Lab Practice	1
Course objective	 To familiarize the student with assembling circuits us electronic devices . To demonstrate operation of diodes, bipolar and MOS transistors, Demonstrate DC biasing circuits, Transistors as switching Power circuits and systems. To design and demonstrate Op-amp based circuits for nonlinear applications 	sing basic device, linear and
Course Outcome	 Students will be able to Demonstrate operation of basic electronic devices such as I Demonstrate operation of basic electronic devices BJT, circuits using BJT AND find frequency response Demonstrate operation of MOSFET. Demonstrate linear applications of operational amplifier. Demonstrate non-linear applications of operational amplifie Design various circuits like regulator. 	Diode , Assemble er

Syllabus: Same as that of Subject ISC302 Analog Electronics.

List of Laboratory Experiments:

Sr. No.	Detailed Content	CO Mapping
1	Clipping and clamping circuits using diode.	CO1
2	Plot input / output characteristics of BJT- CB, CE, and CC	CO2
	Configuration.	
3	Design and analysis of biasing circuit and observing performance of	CO2
	BJT as a amplifier at various operating points.	

4	BJT amplifier frequency response.	CO2
5	Demonstrate BJT as a switch and analysis of circuit	CO2
6	Study of input and transfer characteristics of FET.	CO3
7	FET amplifier frequency response.	CO3
8	Demonstrate use of Op-Amp as inverting and non-inverting amplifier	CO4
9	Clipper and Clamper circuits using Op-amp.	CO5
10	Precision rectifiers using Op-amp	CO5
11	Wein bridge oscillator using Op-amp	CO5
12	Demonstrate integrator and differentiator using Op-amp.	CO4
13	Adder and Subtractor using Op-amp	CO4
14	RC phase shift oscillator using Op-amp	CO5
15	Design and analysis of series regulator	CO6
16	Design and analysis of shunt regulator	CO6

Any other experiment based on syllabus which will help students to understand topic/concept

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 10 experiments. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs / journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject	Subject	Teaching	g scheme		Credit assigned				
code	Name	_							
ISL303	Transducer	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	- I Lab	-	02	-	-	1	-	1	
	Practice								

Sub	Subject	Examina	Examination scheme						
Code	Name					Term	Pract.	Oral	Total
		Internal	Internal Assesment End			work	And		
		Test1	Test2	Avg.	sem		oral		
					exam				
ISL303	Transducer	-	-	-	-	25	25	-	50
	- I Lab								
	Practice								

Subject Code	Subject Name	Credits					
ISL303	Transducer –I Lab Practice	1					
Course objective	1. To make students understand the Identification, constru	ction,					
	working principle of various transducers used for Displa	working principle of various transducers used for Displacement					
	measurement, Temperature measurement, Level measure	measurement, Temperature measurement, Level measurement and					
	miscellaneous measurement.	miscellaneous measurement.					
	2. To experimentally verify the principle and characteristic	2. To experimentally verify the principle and characteristics of					
	various transducers						
Course Outcome	The students will be able to						
	1. Explain measurement techniques and measuring instrume	ents.					
	2. Classify sensors, Transducers, and their brief Performance						
	specifications.						
	3. Examine characteristics of various temperature transduce	rs.					
	4. Examine characteristics of various level transducers						
	5. To demonstrate the performance characteristics of displace	cement					
	transducers.						
	6. To demonstrate the performance characteristics of miscel	laneous					
	transducers.						

Syllabus: Same as that of Subject ISC303 Transducers - I.

List of Laboratory Experiments:

Sr.	Detailed Contents	СО
No.		mapping
1.	Basic Measurements and Measuring Instruments.	CO1
2.	Temperature Measurement using various Thermometers.	CO2, CO3
3.	Plot characteristics of RTD	CO2, CO3
4.	Plot characteristics of various Thermocouples.	CO2, CO3
5.	Plot characteristics of Thermistors.	CO2, CO3
6.	Temperature Measurement with and without Thermo-well.	CO2, CO3
7.	Liquid Level Measurement using DP Cell.	CO2, CO4
8.	Liquid Level Measurement using Capacitance Type Level	CO2, CO4

University of Mumbai, Instrumentation Engineering, Rev 2016-17

	Sensor.	
9.	Liquid Level Measurement using Tubular Level Gauge and	CO2, CO4
	Ultrasonic Level Sensor.	
10.	Displacement Transducer using LVDT.	CO2, CO5
11.	Plot Response curve for Flapper Nozzle system.	CO2, CO5
12.	Humidity measurement.	CO2, C06
13.	Application of Proximity sensor	CO2, C06
14	Application of optical sensors.	CO2, C06

Any other experiments based on syllabus which will help students to understand topic/concept.

Term Work:

Term work shall consist of minimum eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) :	10 Marks
Laboratory work (programs / journal) :	10 Marks
Attendance (Practical) :	5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Subject	Subject Name	Teaching scheme			Credit assigned			
code								
ISL304	Digital Electronics	Theory	Pract	Tut.	Theory	Pract.	Tut.	Total
	Lab Practice	-	2	-	-	1	-	1

Sub	Subject	Examination scheme							
Code	Name					Ter	Pract.	Oral	Total
		Internal Assessment End			End	m	and		
		Test1	Test2	Avg.	Sem	wor	Oral		
					Exam	k			
ISL304	Digital	-	-	-		25	-	-	25
	Electroni								
	cs Lab								
	Practice								

Subject Code		Subject Name	Credits
ISL304		Digital Electronics Lab Practice	1
Course objectives	1.	To provide students basic experimental experiences i of various gates, combinational circuit.	in the operation
	2.	To develop skills in the design of multiplexer, demulti state machine design.	plexer, counter,
Course Outcomes		Students will be able to –	
	1.	Implement code converters.	
	2.	Verifying truth tables of all logic gates using NAND as	nd NOR gates.
	3.	Using gates for constructing half and full adder and also realize with multiplexer.	subtractor and
	4.	Understand the basics of types of flip-flops and o implement other flip-flops.	design them to
	5.	Design and implement counters and shift registers.	
	6.	Learn how to convert BCD to seven segment and de machine.	sign finite state

Syllabus: same as that of subject ISC304 Digital Electronics

List of Laboratory Experiments:

Sr.	Detailed Contents	СО
No.		mapping
1.	Implementation and conversion of gray/binary code.	CO1
2.	Implementation of all gates using NAND/NOR.	CO2
3.	Implementation of half/ full adder.	CO3
4.	Implementation of half/ full Subtractor	CO3
5.	Realise full adder using 2:1 Multiplexer	CO3
6.	Realise full Subtractor using 2:1 Multiplexer	CO3

7.	Implementation of various flip-flops	CO4
8.	Design and implement RS flip flop into other flip flops	CO4
9.	Design and implement JK flip flop into other flip flops	CO4
10.	Design and implement modulo-n counter	CO5
11.	Design and implement ring counter	CO5
12	Design and implement universal shift register	CO5
13	Implement BCD to seven segments	CO6
14.	Design finite state machine for a digital lock	CO6

Note:

- 1. Any other experiments based on syllabus which will help students to understand topic/concept.
- 2. It is advised to implement one or two practicals with VHDL.

Term Work:

Term work shall consist of minimum eight experiments.

The distribution of marks for term work shall be as follows:					
Laboratory work (Experiments)	: 10 Marks				
Laboratory work (programs/ journal)	: 10				
Marks Attendance	: 5 Marks				

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
ISC401	Applied Mathematics	Theory Practical Tutori al		Theory	Practical	Tutorial	Total	
	- IV	04		01	04		01	05

	Subject		Examination Scheme						
Subject	Name		Theor	y Marks	8		Pract.	Oral	Total
Code		Test 1	Test 2	Avg.	End Sem	Term			
					Exam	Work			
ISC401	Applied	20	20	20	80	25			125
	Mathematics								
	- IV								

Subject Code	Subject Name	credits
ISC401	Applied Mathematics - IV	5
Course Objectives	1. To develop analytical insight of the student to prep graduate's studies in Instrumentation Engineering	are them for
	2. To enhance their ability to solve and analyse engineering	problem.
	3. To provide students with a strong mathematical foundat the professional competence knowledge and skills.	ion to acquire
Course Outcomes	The students will be able to:	
	1. Check the given set of vectors is the vector space.	
	2. Find eigenvalues and eigenvectors of matrix and can d matrix.	iagonalize the
	3. Find the probability distribution, expectation, variance for the given data.	and moments
	4. Use binomial distribution and Poisson distribution distribution for the data for required probability.	and normal
	5. Apply Cauchy's integral formula and theorem and resid solve the integral problem.	ue theorem to
	6. Find the correlation coefficients and rank correlation co- lines regression between the two data.	efficients and

Details of syllabus:

Pre-requisites:

Basics of Complex numbers, Analytic Function, Matrices, Symmetric, Orthogonal and Unitary matrices, Rank, Normal form, Solution of system of linear equations, L. I. & L. D. vectors, Basics of Probability.

Module	Contents		CO	
			mapping	
1	Linear Algebra: Vector Spaces Vectors in n-dimensional vector space: properties, dot product, cross product, norm and distance properties in n-dimensional vector space. Vector spaces over real field, properties of vector spaces over real field, subspaces. The Cauchy-Schwarz inequality. Orthogonal Subspaces. Gram-	06	CO1	
	Schmidt process			
2	Linear Algebra: Vector Matrix Theory Characteristic equation, Eigen values and Eigen vectors, properties of Eigen values and Eigen vectors Cayley-Hamilton theorem, examples based on verification of Cayley- Hamilton theorem. Similarity of matrices, Diagonalisation of matrices. Functions of square matrix, derogatory and non-derogatory matrices.	10	CO2	
3	Random VariablesDiscrete & continuous random variables, expectation, Variance,Probability mass function and Density Function, Probabilitydistribution for random variablesMoments, Moment Generating Function.Functions of one random variable and their distribution and densityfunctions	10	CO3	
4	Probability distribution Probability distribution: Binomial distribution, Poisson & normal distribution (For detailed study)	6	CO4	
5	Complex integration Complex Integration: Line Integral, Cauchy's Integral theorem for simply connected regions, Cauchy's Integral formula. Taylor's and Laurent's Series Zeros, singularities, poles of f(z), residues, Cauchy's Residue theorem. Applications of Residue theorem to evaluate real Integrals of different types.	12	CO5	
6	Correlation & Regression Karl Pearson's coefficient of correlation, covariance, Spearman's Rank correlation. Lines of Regression.	4	CO6	

Text Books:

- 1. Higher Engineering Mathematics by Dr. B. S. Grewal 42th edition, Khanna Publication.
- 2. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.

Reference Books:

1. A Text Book of Applied Mathematics Vol. II by P. N. Wartilar & J. N. Wartikar, Pune, University of Mumbai, Instrumentation Engineering, Rev 2016-17
Vidyarthi Griha Prakashan., Pune.

- 2. Advanced Engineering Mathematics by C. Ray Wylie & Louis Barrett. TMH International Edition.
- 3. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- Theory and Problems of Statistics by Murry R. Spieget, Schaum's outline series-McGraw Hill Publication.

Subject	Subject	Teaching scheme			Credit assigned			
code	Name							
ISC402	Transducer	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	- II	4	-	-	4	-	-	4

Sub	Subject	Examin	Examination scheme								
Code	Name	Theory (out of 100)				Term	Pract.	Oral	Total		
		Internal Assessment			End Sem	work	and				
		Test1	Test2	Avg.	Exam		Oral				
ISC402	Transducer -	20	20	20	80	-	-	-	100		
	II										

Subject Code	Subject Name	credits
ISC402	Transducer II	4
Course Objectives	1. To make students understand the construction, working	g principle
	and application of various transducers used for flow	
	measurement, strain measurement, pressure and vacuu	m
	measurement, force, torque and power measurement	
	2. To study electro-chemical sensors and transducers used	l for
	density and viscosity measurement	
Course Outcomes	The course would enable the students to:	
	1. Explain working principle of strain gauges.	
	2. Explain working principle of pressure transducers	
	3. Learn transducers for vacuum measurement.	
	4. Identify types of flow and use different transducers for measurement.	flow
	5. Explain the terminologies of electrochemical sensors as applications in industry.	nd their
	6. Identify sensors for power, density, humidity, pH meas	urement.

Details of Syllabus:

Prerequisite: Knowledge of basic measurement techniques

Module	Contents	Hrs.	СО
			mapping
1	Strain Measurement	04	CO1
	Introduction, types of strain gauge, gauge factor calculation,		
	materials for strain gauge, resistance strain gauge bridges,		
	temperature compensation and applications of strain gauges		
2	Pressure Measurement	12	CO2
	Pressure scales, units and relations, classification		
	Primary pressure sensors - elastic elements like bourdon tube,		
	diaphragm, bellows, properties and selection of elastic		
	materials, Calibration using dead weight tester.		
	Electrical/Secondary Pressure Transducers: Capacitive,		
	piezo-electric and its material, variable reluctance, LVDT,		
	strain gauge.		
	High Pressure Measurement: Bulk modulus cell, Bridgeman		
	type, capsule.		
	Differential pressure measurement: Force balance, motion		
	balance, DP Cell, semiconductor strain gauges.		

	Pressure measurement using manometer: U-tube types, well		
	type, inclined type, micro manometer		
3	Vacuum Measurement	04	CO3
	Units and relations, McLeod gauge, Pirani gauge, thermocouple		
	gauge, hot and cold cathode ionization gauge, Knudsen gauge		
4	Flow Measurement	16	CO4
	Introduction to fluid flow : properties of fluid, types of fluid,		
	dimensionless numbers, types of fluid flow, continuity equation,		
	Bernoulli's equation, hydrostatic law, Pascal's law, flow		
	through pipes – major and minor losses, flow measurement		
	through open channel-weirs and notches. Materials used for		
	flow sensors, performance of materials, corrosion resistors,		
	erosion, effect of vapour pressure		
	Head Type : orifice, venturi, nozzle, pitot tube, annubar,		
	Variable Area Type: Dotemator		
	Valority and Inortia based flowmators: Turbine		
	electromagnetic ultrasonic positive displacement		
	anemometers mass flow meters solid flow measurements		
5	Electro-chemical Sensors	04	CO5
5	Terminology equations units pH measurement-electrodes	01	000
	measuring circuits maintenance temperature compensation		
	calibration. Conductivity measurement_probes and measuring		
	circuits		
		0.0	COL
6	Miscellaneous Measurement	08	CO6
	Force Measurement: strain gauge, LVDT, piezoelectric.		
	Torque: Torsion bar, strain gauge.		
	Power: Dynamometer, instantaneous power measurement,		
	alternator power measurement.		
	Density Measurement – Displacement and float type		
	densitometers		
	Hydrometers, Radiation and Ultrasonic densitometers		
	Viscosity Measurement – Capillary tube viscometer, Efflux		
	type viscometer, Variable area viscometer		
	Introduction to Advances in sensors technology: Smart sensors,		
	MEMS, Nano sensors, Semiconductor sensors, Optical fiber		
	sensors.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Nakra B.C., Chaudhary K.K., Instrumentation Measurement and Analysis, Tata Mc Graw Hill.
- 2. Sawhney A.K., Electrical and Electronic Measurement and Instrumentation, Dhanpatrai And Co.
- 3. Rangan, Mani, Sarma, "Instrumentation Systems and Devices", 2nd ed., Tata Mc Graw Hill.

Reference Books:

- 1. Doeblin E.D., "Measurement system", Tata Mc Graw Hill., 4th ed, 2003
- 2. Liptak B.G., "Instrument engineer's handbook Process measurement and analysis".
- 3. Douglas M. Considine, "Process Instruments and controls", Handbook, Mc Graw Hill.
- 4. Curtis Johnson, "Process Control Instrumentation Technology", 8th ed, 2005
- 5. Andrew Williams, "Applied Instrumentation in process industry", Vol-I, Gulf publishing company.
- 6. Bansal R.K., "Fluid Mechanics and Hydraulic Machines", Laxmi publications.
- 7. David W. Spitzer, "Industrial Flow Measurement", ISA Publication.
- 8. Sawhney A.K., "Mechanical Measurement", Dhanpatrai And Co.

Subject code	Subject Name	Teaching	Teaching scheme			Credit assigned				
ISC403	Feedback Control	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
	System	4	-	-	4	-	-	4		

Sub	Subject Name	Examin	Examination scheme								
Code		Theory	Theory (out of 100)				Pract.	Oral	Total		
		Internal Assessment			End Sem	work	and				
		Test1	Test2	Avg.	Exam		Oral				
ISC403	Feedback	20	20	20	80	-	-	-	100		
	Control System										

Subject Code	Subject Name	Credits						
ISC403	Feedback Control System	4						
Course	The students should be able to learn the type of System, dynamics of physical							
Objectives	systems, classification of control system, analysis and design objective.							
	2. The students should learn how to represent system by transfer function a	nd block						
	diagram reduction method and Mason's gain formula.							
	3. The students should able to learn time response analysis and demonstr	ate their						
	knowledge to frequency response.							
	4. Students can be able to learn stability analysis of system using Root locus	, bode						
	plot, polar plot, and Nyquist plot.							
Course	Students will be able to -							
Outcomes	1. Identify open and closed loop control system							
	2. Formulate mathematical model for physical systems.							
	3. Simplify representation of complex systems using reduction technic	ques.						
	4. Use standard test signals to identify performance characteristics of	of first and						
	second-order systems.							
	5. Apply root locus technique for stability analysis.							
	6. Analyze performance characteristics of system using Frequency resp	onse						
	methods.							

Details of Syllabus:

Prerequisite: Knowledge of Laplace and Inverse Laplace Transform.

Module	Contents	Hrs	CO mapping
1	Introduction	4	CO1
	Definition of control system and related terms, open loop and closed		
	loop system, examples. Development of automatic control systems,		
	classification of control system, examples		
2	Mathematical Models of	8	CO2
	Physical Systems		
	Definition of physical systems, principle of superposition and		
	homogeneity, linear/non-linear, time variant/time invariant		
	systems. Types of dynamic model, linear elements of electrical		
	and mechanical systems, differential equations of physical		
	systems-mechanical systems, electrical systems – RLC series,		
	parallel circuits, Analogous systems.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books.

1. Nagrath I. G., Gopal M., Control System Engineering, New Age International (P) Ltd.

Publishers, 2000

2. Kuo Benjamin C., "Automatic Control Systems",6th Edition, Prentice Hall of India, New Delhi, 1993.

Reference Books

- 1. Gopal M. "Control Systems Principles and Design", Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1998.
- 2. Nise Norman S., "Control Systems Engineering", 3rd.Edition, John Wiley and Sons, Inc.-2000.
- Lewis Paul H., Chang Yang, "Basic Control Systems Engineering", Prentice HallInternational, Inc. 1997.
- 4. Raymond T. Stefani, Bahram Shahian, late Clement J. Savant and, late Gene H. Hostetter, "Design of Feedback Control Systems", 4th Edition., Oxford, University Press, New Delhi, 2001.
- 5. Dhanesh N. Manik, "Control System", Cengage Learning India, 1stEdition, 2012.

Subject	Subject Name	Teaching Sch	neme (H	rs.)	Credits Assigned			
Code	5	Theory	Pract	Tut.	Theory	Pract.	Tut.	Total
ISC404	Analytical Instrumentation	3	-	-	3	-	-	3

Subject	Subject Name	Examination Scheme								
		Theory				T	Pract.		T . ()	
Code		Internal Assessment (out of 20)			End sem	Work	and Oral	Oral	Iotal	
		Test 1	Test 2	Avg	Exam					
ISC404	Analytical Instrumentation	20	20	20	80	-	-	-	100	

Subject Code	Subject Name	Credits
ISC404	Analytical Instrumentation	3
Course Objectives	 Introduce the basic concept of qualitative and quantitative analysis of sample. Study various spectroscopic techniques and its instrumentation. Study the concept of separation science and its applications. Study the concept of radiochemical analysis along with industrial analysis 	of a given vzers.
Course Outcomes	 The students will be able to: Define and explain various fundamentals of spectroscopy, quali quantitative analysis. Discuss the terms, principle, instrumentation, operation and appli Molecular spectroscopic techniques. Differentiate between principle, instrumentation and operation of absorption and emission Spectroscopy. Explain the various Separation techniques and its instrumentation. Describe the principle and working of various Radiation detectors. 	tative and cations of of Atomic
	6) Discuss the principle and working of various Gas analyzers.	

Details of Syllabus:

Prerequisite: Knowledge of sensors and analog electronic circuits.

Module	Contents	Hrs	CO
			Mapping

1	 Introduction: Introduction to analytical Instrumentation. Compare classical analytical techniques with instrumental techniques. Fundamentals of Spectroscopy: Nature of Electromagnetic Radiation, Electromagnetic spectrum, Beer Lambert's Law statement and derivation. Deviations from Beer's law. Numerical on EMR and laws of photometry. Interaction of radiation with matter. Instrumentation of spectroscopic analytical system – Radiation sources, Wavelength selectors, Detectors, signal processors and readout modules. 	06	CO1
2	 Molecular Spectroscopy: Molecular Energy levels, correlation of energy levels with transitions. Electronic transitions and Vibrational transitions – Introduction to UV-VIS molecular spectroscopy – basics of single beam, double beam spectrophotometer and filter photometer, its instrumentation and applications. Basic principle of Fluorescence, Phosphorescence and Raman Spectroscopy, components and instrumentation of Fluorimeters, Phosphorimeters and Raman spectrometers. Nuclear/Rotational transitions – Nuclear Magnetic Resonance (NMR) spectroscopy, basic principle and numerical problems based on NMR principle, instrumentation and constructional details of NMR Spectrometer. Electron Spin Resonance (ESR) Spectroscopy – Basic principle and construction of ESR spectrometer. 	10	CO2
3	Atomic Spectroscopy: Atomic Energy levels, Atomic absorption spectrometers- components, working and absorption spectra. Atomic Emission spectrometers – components, working and emission spectra, comparison between AAS and AES.	03	CO3
4	 Separation Science: Chromatography: Fundamentals of chromatographic Separations, Classification, Gas chromatographic system with components, factors affecting separation, applications. Analysis of Gas Chromatogram. HPLC – Its principle and instrumentation. Mass Spectrometers: Basic principle, components and types of mass spectrometers, sample handling techniques for liquids and solids, resolution and numerical problems based on resolution. Interfacing Gas Chromatography and Mass spectrometery (GCMS). 	09	CO4
5	Radio Chemical Instrumentation: Basics of Radioactivity, properties of radiations (α , β , γ). Half- life period and numerical problems based on half-life period. Radiation detectors – Ionization chamber, Proportional counter, Geiger Muller counter, Scintillation detector, Semiconductor detectors, Pulse height analyzers.	05	CO5

03

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- Question No. 1 will be compulsory and based on entire syllabus wherein sub questions will be of 4 to 5 marks.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Text Books:

1. Willard, Merritt, Dean, Settle, *Instrumental Methods of Analysis*, CBS Publishers & Distributors, New Delhi, 7th Edition.

2. Khandpur R. S., Handbook of Analytical Instruments, Tata McGraw-Hill Publications, 3rd Edition.

Reference Books:

- 1. Skoog, Holler, Niemen, *Thomson Principles of Instrumental Analysis*, Books-Cole Publications, 5th Edition.
- 2. Ewing Galen W., Instrumental Methods of Chemical Analysis, McGraw-Hill Book Company, 5th Edition.
- 3. Braun Robert D., Introduction to Instrumental Analysis, McGraw-Hill Book Company.
- 4. Sherman R.E., Analytical Instrumentation, ISA Publication.
- 5. B.R.Bairi, Balvindersingh, N.C.Rathod, P.V.Narurkar *Handbook nuclear medical Instruments,* McGraw-Hill Book Company.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISC405	Signal	Theory Pract. Tut.			Theory	Pract.	Tut.	Total
	Conditioning	4	-	-	4	-	-	4
	Circuit							
	Design							

Sub	Subject Name	Examin	Examination scheme						
Code		Theory (out of 100)				Term	Pract.	Oral	Total
		Internal Assessment E			End	work	and		
		Test1	Test2	Avg.	sem		Oral		
					Exam				
ISC405	Signal	20	20	20	80	-	-	-	100
	Conditioning								
	Circuit								
	Design								

Subject Code	Subject Name	Credits								
ISC405	Signal Conditioning Circuit Design 4									
Course objectives	1. To give the knowledge about the various components and	alog signal								
	conditioning.									
	2. To impart knowledge of design considerations of ana	log signal								
	conditioning of components.									
	3. To give the students knowledge about various components di	gital signal								
	conditioning.									
	4. To make the students capable to apply knowledge to desi	ign various								
	transducer signal conditioning circuits									
	5. To give the students knowledge about the adjustable power supp	oly design								
Course Outcomes	The students will be able to:									
	1. Explain principle of analog signal conditioning circuits									
	2. Design analog signal conditioners									
	3. Design digital signal conditioners									
	4. Apply knowledge of signal conditioning circuits to design temp	erature and								
	pressure transducers signal conditioning									
	5. Apply knowledge of signal conditioning circuits to design	optical and								
	miscellaneous transducers signal conditioning	_								
	6. Apply knowledge to design different power supplies.									

Details of Syllabus:

Prerequisite: Knowledge of various sensors and basic electronics.

Module	Contents	Hrs	CO
			mapping
1	Principles of Analog Signal Conditioning:	06	CO1
	Standard analog signals, Signal Level and bias changes,		
	Linearization, signal conversion, filtering and impedance		
	matching, concept of loading.		
	Passive circuits – Divider Circuits, Bridge circuits (Current,		
	Voltage, Balanced and Unbalanced), RC filters		
2	Analog signal conditioners and their design	12	CO2
	Practical applications of Op amp based circuits with design:		

	Differentiators, Integrator, Instrumentation amplifier using 3 op amps Half wave, full wave milivolt rectification, absolute value circuit, Log and antilog amplifier with temperature compensation, active filters, threshold detector, zero crossing detector, window detector, Phase locked loops (PLL), Voltage to Current converter and Current to Voltage Converter, 555 Timer: modes of operation with applications. Guidelines for analog signal conditioning design and design		
	based problems		
3	Components of Digital Signal Conditioning : Block diagram of Digital signal conditioning, Characteristics of digital data: digitized value, sampled data system and linearization, sample and hold circuit, peak detector, ADC (Successive Approximation, Flash, Ramp, dual slope) and DAC (R/2R, Weighted resistors) their types and specifications, V to F and F to V converters.	10	CO3
4	Thermal and Pressure Transducers Signal Conditioning Design: Thermal sensor signal conditioning, design considerations and application for RTD, Thermistor, thermocouple and solid state temperature sensor. Pressure Transducer signal conditioning Design: design considerations and applications for various pressure sensors.	8	CO4
5	Optical and Other Transducer Signal Conditioning Design : Optical Sensor signal conditioning - photo-diode with photo- conducting and photovoltaic modes, photo-transistor and photomultiplier tube. Optical encoder signal conditioning for linear displacement, velocity and angular displacement applications. Other sensor signal conditioning: Potentiometer, LVDT, strain gauges, piezoelectric and capacitive transducers	6	CO5
6	Power Supply Design:	6	CO6
	Power supply design using 78xx series, 79xx series and		
	adjustable voltage IC regulators like 723 and LM317.		
	Switched Mode Power Supply (SMPS): Block diagram with		
	advantages and disadvantages over conventional power supply.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 Marks.

2. Total 4 questions need to be solved.

- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to
- 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Ramakant Gayakwad "Op-amp and Linear Integrated Circuits", PHI Pearson Education.
- 2. C. D. Johnson, "Process Control Instrumentation Technology (VIII Edition)"

Reference Books:

- 1. Roy Choudhary, "Linear Integrated Circuits", Wiley Eastern, 1991.
- 2. Coughlin & Driscoll, "Op-amp and Linear ICs" 6 th Edition, PHI 2002.
- 3. C. D. Johnson, "Microprocessor Based Process Control", PHI
- 4. Sergio Franco, "Design with op-amp analog ICs" McGraw Hill, 1988.
- 5. Robert G. Seippel, "Transducer Interfacing Signal Conditioning for Process Control", Prentice Hill.
- 6. D. E. Pippenger and E. J. Tobanen, "Linear and Interface Circuits Applications", McGraw Hill, 1988.
- 7. Burr-Brown, "General Catalog", Tucson, Ariz:Burr-Brown, 1979.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL401	Application	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Software	-	4*	-	-	2	-	2
	Practice							

* Out of 4 hours 2 hours theory shall be taught to entire class followed by 2hours practical in batches

Sub	Subject	Examin	Examination scheme							
Code	Name						Pract.	Oral	Total	
		Internal	Internal Assessment End			work	and			
		Test1	Test2	Avg.	Sem		Oral			
					Exam					
ISL401	Application	-	-	-	-	50	25	-	75	
	Software									
	Practice									

Subject Code	Subject Name	Credits					
ISL401	Application Software Practice	2					
Course objectives	To study graphical programming language for creating simulation						
	and custom applications that interact with real-world data	d custom applications that interact with real-world data or signals					
	in fields of science and engineering.						
Course Outcomes	 Students will be able to 1. Design logical operations, using Graphical programm language 2. Develop customized virtual instruments and represent required format with user friendly graphical programm software for LOOPS like FOR LOOP, WHILE LOOF 3. Discuss Global variable, sequence structure etc. 4. Explain Visa programming 5. Discuss concepts of hardware used 6. Use the data acquisition card or simulated software m make user interface in the field of engineering. 	ing t them in ming P etc. odule and					

Details of Syllabus:

Prerequisite: Knowledge of Mathematics and conversion, LOOPs, switch CASE of any other software like C program, simple concept of proportional process.

Module	Contents	Hrs	CO mapping
1	Graphical Programming Software basics: Components of virtual instrument, creating virtual files and sub-files, data types, debugging techniques.	03	C01
2	Structures- FOR, WHILE, Case structure, Timing, formula nodes and math script, loops- shift registers Auto-indexing concept, feedback nodes. Arrays and clusters, Strings, File I/O.	07	CO2
3	Sequence structure -Local and global variables, Express virtual files	02	CO3
4	VISA programming, Understanding simple concepts of control using PID block, Plotting data graphs and charts,	06	CO4

5	Introduction to terms: Measurement system, sampling, calibration, measurement hardware- configuration.	02	CO5
6	Data Acquisition cards, Graphical Programming Software modules and tool sets, general applications of Graphical Programming Software.	04	CO6

List of Laboratory Experiments:

Sr. No.	Detailed Contents	CO
		mapping
1	To develop a VI to calculate speed, convert degree celcius to Fahrenheit	CO1
2	To develop a Sub VI to Perform Half adder and implement Full ADDER using Sub-VI	C01
3	To develop VI using FOR and WHILE loop to add 10 numbers, calculate Factorial of a given number	CO2
4	To create VI to find roots of quadratic equation, user defined unit conversions etc using case structure.	CO2
5	To create VI student database using String control and Array and cluster functions.	CO2
6	To develop a VI for storing all the points of simulated signal using File I/Os	C01
7	To create VI to simulate traffic light control, stirred tank heater etc. using Sequence structure	CO3
8	To create VI to simulate bottle filling plant using Sequence structure.	CO3
9	Build a VI to plot circle in XY graph, generate and plot random numbers on chart, different colors in an intensity graph etc with graph, chart properties and options.	CO4
10	Applications of Graphical Programming Software in digital electronics—binary to decimal conversion etc.	CO1,CO2
11	Applications of Graphical Programming Software in control — simulate first and second order system response, effect of damping factor etc.	CO4
12	Applications of Graphical Programming Software in process —tank level/temperature control, alarm annunciator, batch process control etc.	CO5
13	Measurement of AC/ DC voltage and current using DAQ cards.	CO6
14	Any one Mini project based on the above syllabus	CO1 -CO6

Note:

Any other experiments based on syllabus which will help students to understand topic/concept can also be included.

For this course use Graphical Programming Software like Lab View or Open Source Software

Term Work:

Term work shall consist of minimum 10 programs from the list of suggested programs and one Mini-project of your choice or from the list given above.

The distribution of marks for term work shall be as follows:

Laboratory work (Performing Experiments)	: 20 Marks
Laboratory work (programs/ journal)	: 10 Marks
Mini Project	: 15 Marks
Marks Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Practical /oral Examination:

Practical/Oral examination will be based on entire syllabus.

Reference Books:

- 1. Robert Bishop, "Learning with LabVIEWTM 7 express", Pearson Education, 2005.
- 2. Jovitha Jerome, "Virtual Instrumentation", PHI, 2010.
- **3.** Gupta S, "Virtual Instrumentation Using LabVIEW", Tata McGraw Hill Publishing Company Limited.
- **4.** LabVIEW users manual.
- 5. National instruments Product catalog.

Website: www.ni.com

Subject	Subject	Teaching	Credi	Credit assigned							
code	Name										
ISL402	Transducer -	Theory	Pract	Tut.	Theorem	ry	Pract	•	Tu	t.	Total
	II Lab										
	Practice	-	2	-	-	- 1				-	1
Sub	Subject	Examina	tion sch	eme							
Code	Name					Te	rm	Pra	ct.	Oral	Total
		Internal A	Assessm	ent	End	wo	rk	and			
		Test1	Test2	Avg.	Sem			Ora	1		
					exam						
ISL402	Transducer -	_	-	-	-		25	2:	5	-	50
	II Lab										
	Practice										

Subject Code	Subject Name	credits					
ISL402	Transducer II Lab Practice	1					
Course Objectives	1. To make students understand the construction, work	ing					
	principle and application of various transducers used	l for flow					
	measurement, strain measurement, pressure.						
	2. To study electro-chemical sensors and transducers u	. To study electro-chemical sensors and transducers used for					
	density and viscosity measurement						
	3. To experimentally verify the principle and characteristics of						
	various transducers						
Course Outcomes	Students will be able to -						
	1. Explain working principle of transducers used for st	train					
	measurement.						
	2. Explain working principle of transducers used press	sure					
	measurement.						
	3. Identify constant head type flow sensors such as orif	ice,					
	venturi, tube, nozzle and pitot tube and study the app	plications.					
	4. Identify variable area and electromagnetic flow met	ers					
	5. Demonstrate the performance characteristics of varie	ous					
	electrochemical sensors						
	6. Use miscellaneous sensors for density and viscosity						
	measurement.						

Syllabus same as that of subject ISC402 Transducers-II

List of Laboratory Experiments:

Sr. No.	Detailed Contents	CO mapping
1.	Strain gauge characteristics and weight measurement	C01
2.	Study use of semiconductor strain gauges for pressure measurement	CO2
3.	Study measurement of pressure using bellows, diaphragm, bourdon tube, manometer.	CO2
4.	Test and calibration of pressure gauges using dead weight tester.	CO2
5.	Measurement of flow using orifice/venturi tube/nozzle/pitot tube.	CO3
6.	Measurement of flow using rotameter.	CO4

University of Mumbai, Instrumentation Engineering, Rev 2016-17

7.	Measurement of flow using electromagnetic flow meter.	CO4
8.	Study and characterization of pH meter.	CO5
9.	Study and characterization of conductivity meter.	CO5
10.	Measurement of Density	CO6
11.	Viscosity measurement	CO6

Any other experiments based on syllabus which will help students to understand topic/concept.

Term Work:

Term work shall consist of minimum eight experiments.

The distribution of marks for term work shall be as f	follows:
Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs/ journal)	: 10
Marks Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Practical /oral Examination:

Practical/Oral examination will be based on entire syllabus.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL403	Feedback	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Control Systems	-	2	-	-	1	-	1
	Lab Practice							

Sub	Subject Name	Exami	Examination scheme								
Code		Internal Assessment			End Sem Exam	Term work	Pract. and	Oral	Total		
							Oral				
		Test1	Test2	Avg.							
ISL403	Feedback	-	-	-	-	25	-	25	50		
	Control Systems										
	Lab Practice										

Subject Code	Subject Name	credits					
ISL403	Feedback Control Systems Lab Practice	1					
Course objectives	1. The students should be able to examine steady-state and frequence	сy					
	response of the Type 0, 1, and 2 systems.						
	 The students should be able to examine steady-state and frequency 						
	response of first and second order electrical systems.						
	3. The students should able to examine time response analysis of first and						
	second order systems.						
	4. Students can be able to inspect stability analysis of system using Root						
	locus, Bode plot, polar plot.						
Course Outcomes	Students will be able to -						
	1. Plot frequency response of first-order electrical system.						
	2. Plot time response of second-order electrical system and calc steady-state error.	culate the					
	3. Demonstrate their knowledge to obtain the transfer function and and steady-state response to test signals such as step, ramp, and p	transient					
	4. Understand the effect of damping factor on system response.						
	5. Inspect the time response specifications of systems by using root	-locus.					
	6. Inspect the frequency response specifications of systems by us	ing bode-					
	plot, Polar plot, Nyquist-plot techniques, and comment on the st	tability of					
	system						

Syllabus same as that of subject ISC403 Feedback Control systems

List of Laboratory Experiments:

Sr. No.	Detailed Contents	CO mapping
1	To plot the effect of time constant on first – order systems response.	CO1
2	To plot the frequency response of first-order system	CO1
3	To plot the time response of second – order systems.	CO2
4	To examine steady state errors for Type 0, 1, 2 systems	CO3
5	To study the block diagram reduction technique by using simulation software.	CO3
6	To interpret the effect of damping factor on the performance of second order system.	CO4

7	To inspect the relative stability of systems by Root-Locus using Simulation Software	CO5
8	To inspect the stability of systems by Bode plot using Simulation Software	CO6
9	To determine the frequency response specifications from Polar plot of system	CO6
10	To inspect the stability of systems by Nyquist plot using Simulation Software	CO6

Any other experiments based on syllabus which will help students to understand topic/concept.

Note: Sr. 1 to 4 experiments should be performed using practical kit /bread-board and Sr. 5 to 10 by using simulation software like MATH CAD/MATLAB/SCILAB/OCTAVE or equivalent. **Term Work:**

Term work shall consist of <u>Eight</u> experiments. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 5 Marks
The final certification and acceptance of te	rm work ensures the satisfactory performance of laboratory
work and minimum passing in the term wo	rk.

Oral Examination:

Oral examination will be based on entire syllabus.

Subject	Subject Subject Name	Teaching Sch	Credits Assigned					
Code		Theory	Pract	Tut.	Theory	Pract.	Tut.	Total
ISL404	Analytical Instrumentation Lab Practice	-	2	-	-	1	-	1

		Examination Scheme								
Subject	Subject Name	Theory				Term Work	Pract. and Oral	Oral	Total	
Code		Internal Assessment End sem								
		Test 1	Test 2	Avg	Exam		0101			
ISL404	Analytical Instrumentation Lab Practice	-	-	-	-	25	_	25	50	

Subject Code	Subject Name	Credits
ISL404	Analytical Instrumentation Lab Practice	1
Course Objectives	 To make students perform experiments to understand co working of various Analytical Instruments. To develop skills in analyzing the sample using various spectechniques. 	ncept and ctroscopic
Course Outcomes	 The students will be able to: Illustrate the concept and working of various spectromer different samples. Analyze the given sample in qualitative and quantitative man spectral techniques. Use specific techniques employed for monitoring different pollut and water. Demonstrate the working of various radiation detectors. Experiment the working of instruments used for clinical ana pharmaceutical laboratories. Illustrate the concept of separation science. 	ters using ner, using cants in air alysis, and

Syllabus: Same as that of Subject ISC404 Analytical Instrumentation.

List of Laboratory Experiments / Assignments:

Sr.	Detailed Content	CO
No.		Mapping
1.	To calculate the refractive index of a given sample using Refractometer.	CO1
2.	To examine the optical density of a given sample using Photoelectric Colorimeter.	CO2

University of Mumbai, Instrumentation Engineering, Rev 2016-17

3.	To identify the optical density of a given sample using Balance cell Colorimeter.	CO2
4.	To determine the absorbance and transmittances of a given sample using	CO2
	Single/double beam UV/VIS spectrometer.	
5.	To examine the optical density of given electrophoresis strip using Densitometer.	CO1
6.	To identify the turbidity of given sample using Nephalo-turbidity meter.	CO3
7.	To determine the pH of a given solution using pH meter.	CO5
8.	To determine the conductivity of a given sample using conductivity meter.	CO5
9.	To determine the Na and K concentration in a given sample using Flame Photometer	CO1
10.	To examine the fluorescence phenomenon using Photo-fluorimeter.	CO1
11.	To demonstrate the radioactive radiations using Geiger Muller counter and	CO4
	Scintillation counter.	
12.	To demonstrate the working of Gas chromatograph.	CO6

Any other experiment based on syllabus which will help students to understand topic/concept.

Note:

- 1. Minimum of eight experiments and two assignments can be performed during the semester for term work and oral examination.
- 2. Industry visit is advised to understand the concept of Analytical Instrumentation subject.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term work:

Term work shall consist of minimum 08 experiments from the above given list and 02 assignments on the entire syllabus.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Two Assignments and viva on practicals	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching	g scheme	2 2	Credit assigned			
ISL405	Signal	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Conditioning	-	2	-	-	1	-	1
	Circuit Design							
	Lab Practice							

Sub	Subject Name	Exam	Examination scheme							
Code		Intern	al Assess	sment		Term	Pract.	Oral	Total	
					End	work	and			
		Test	Test2	Avg.	semEx		Oral			
		1			am					
ISL405	Signal	-	-	-	-	25	25	-	50	
	Conditioning									
	Circuit									
	Design Lab									
	Practice									

Subject Code	Subject Name	credits						
ISL405	Signal Conditioning Circuit Design Lab Practice	1						
Course objectives	1. To give the knowledge about the various components an	alog signal						
	conditioning.							
	2. To impart knowledge of design considerations of ana conditioning of components.	alog signal						
	3. To give the students knowledge about various compone signal conditioning.	ents digital						
	4. To make the students capable to apply knowledge to des transducer signal conditioning circuits	To make the students capable to apply knowledge to design various transducer signal conditioning circuits						
	5. To give the students knowledge about the adjustable po	wer supply						
	design							
Course Outcomes	The students will be able to	e students will be able to						
	1. Explain working principle of signal conditioning circuit	its						
	2. Discuss the design considerations of analog signal co	onditioners						
	used in transducer signal conditioning.							
	3. Discuss the design considerations of various digi	ital signal						
	conditioners used in transducer signal conditioning.	-						
	4. Apply knowledge of signal conditioning circuits to design t	emperature						
	and pressure transducers signal conditioning	_						
	5. Apply knowledge of signal conditioning circuits to design miscellaneous transducers signal conditioning	optical and						
	6. Apply knowledge to design different power supply.							

Syllabus: same as that of subject ISC405 Signal Conditioning Circuit Design

List of Laboratory Experiments:

Sr. No.	Detailed Content	CO Mapping
1	Demonstrate non-inverting buffer amplifier circuit	CO1

2	Design and demonstrate general signal conditioning circuit to convert sensor	CO2
	output to 0-5 V	
3	Design and demonstrate general signal conditioning circuit to convert sensor	CO2
	output to 4-20 mA	
4	Design and demonstrate signal conditioning circuit for low level signals in	CO2, CO4
	micro-volts' region	
5	Design and demonstrate absolute value circuit for an application	CO2
6	Design and demonstrate signal conditioning circuit for weight measuring	CO5
	system using strain gauge	
7	Design and demonstrate signal conditioning circuit for capacitive transducer	CO5
8	Design and demonstrate second order LPF and HPF for any application	CO2
9	Design signal conditioning circuit for RTD	CO4, CO2
10	Design signal conditioning circuit for optical sensor.	CO2, CO5
		,
11	Design and demonstrate digital to Analog converter circuit	CO3
12	Design and demonstrate I to V and V to I converter circuit	CO2
13	Design and implement Astable and Monostable Multivibrator using IC 555.	CO3
14	Design adjustable voltage regulators using IC723/ LM317	CO6

Any other experiments based on syllabus which will help students to understand topic/ concept.

Term Work:

Term work shall consist of minimum eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs / journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Program Structure for TE Instrumentation Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester V

Course	Course Name	Teaching Scheme (Contact Hours)		neme urs)	Credits Assigned			
Code	Course Maine	Theo ry	Practic al	Tutori al	Theory	Practi cal	Tutoria l	Total
ISC501	Signals and Systems	4	-	-	4	-	-	4
ISC502	Applications of Microcontroller	4	-	-	4	-	-	4
ISC503	Control System Design	4	-	-	4	-	-	4
ISC504	Control System Components	4	-	-	4	-	-	4
ISDLO50 1X	Department Level Optional Course I	3	-	-	3	-	-	3
ISL501	Business Communication and Ethics	-	4#	-	-	2	-	2
ISL502	Applications of Microcontroller – Lab Practice	-	2	-	-	1	-	1
ISL503	Control System Design Lab Practice	-	2	-	-	1	-	1
ISL504	Control System Components – Lab Practice	-	2	-	-	1	-	1
ISL505	Department Level Optional Course I – Lab Practice	-	2	-	-	1	-	1
ISL506	Mini-project – I	-	2	-	-	1	-	1
	Total	19	14	-	19	07	-	26

Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

		Examination S	cheme				
		Theory					
G	Course Name	End Sem Exam	Internal Assessment	Term Work	Oral	Pract. & Oral	
Code		(ESE)	(IA)				Total Marks
		Max	Max	Max	Max	Max	WIAIKS
		Marks	Marks	Marks	Marks	Marks	
ISC501	Signals and Systems	80	20	-	-	-	100
ISC502	Applications of Microcontroller	80	20	-	-	-	100
ISC503	Control System Design	80	20	-	-	-	100
ISC504	Control System Components	80	20	-	-	-	100
ISDLO50 1X	Department Level Optional Course I	80	20	-	-	-	100
ISL501	Business Communication and Ethics	-	-	50	-	-	50
ISL502	Applications of Microcontroller – Lab Practice	-	-	25	-	25	50
ISL503	Control System Design Lab Practice	-	-	25	25	-	50
ISL504	Control System Components – Lab Practice	-	-	25	-	25	50
ISL505	Department Level Optional Course I – Lab Practice	-	-	25	25	-	50
ISL506	Mini-project – I	-	-	25	25	-	50
Total		400	100	175	75	50	800

Program Structure for TE Instrumentation Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester VI

Course Course Name		Te (C	aching Scl Contact Ho	neme urs)	Credits Assigned			
Code	Course Maine	Theo ry	Practic al	Tutoria l	Theory	Practic al	Tutori al	Total
ISC601	Process Instrumentation System	4	-	-	4	-	-	4
ISC602	Industrial Data Communication	3	-	-	3	-	-	3
ISC603	Electrical machines and Drives	4	-	-	4	-	-	4
ISC604	Digital Signal Processing	4	-	-	4	-	-	4
ISC605	Advanced Control System	3	-	-	3	-	-	3
ISDL0602 X	Department Level Optional Course II	3	-	-	3	-	-	3
ISL601	Process Instrumentation System – Lab Practice	-	2	-	-	1	-	1
ISL602	Industrial Data Communication – Lab Practice	-	2	-	-	1	-	1
ISL603	Electrical machines and Drives – Lab Practice	-	2	-	-	1	-	1
ISL604	Digital Signal Processing – Lab Practice	-	2	-	-	1	-	1
ISL605	Advanced Control System – Lab Practice	-	2	-	-	1	-	1
ISL 606	Mini-project - II	-	2	-	-	1	-	1
	Total	21	12	-	21	06	-	27

Examination Scheme for Semester VI

			Ex	amination Scheme	e		
		Theory					
	Course Name	End Sem Exam	Internal Assessment	Term Work	Oral	Pract. & Oral	
Course Code	Course Mane	(ESE)	(IA)				Total
		Max	Max	Max	Max	Max	Marks
		Marks	Marks	Marks	Marks	Marks	
ISC601	Process Instrumentation System	80	20	-	-		100
ISC602	Industrial Data Communication	80	20	-	-		100
ISC603	Electrical machines and Drives	80	20	-	-		100
ISC604	Digital Signal Processing	80	20	-	-		100
ISC605	Advanced Control System	80	20	-	-		100
ISDL060 2X	Department Level Optional Course II	80	20	-	-		100
ISL601	Process Instrumentation System – Lab Practice	-	-	25	25		50
ISL602	Industrial Data Communication – Lab Practice	-	-	25	-	-	25
ISL603	Electrical machines and Drives – Lab Practice	-	-	25	25	-	50
ISL604	Digital Signal Processing – Lab Practice	-	-	25	-	25	50
ISL605	Advanced Control System – Lab Practice	-	-	25	-	25	50
ISL 606	Mini-project - II	-	-	25#	-	-	25
Total		480	120	150	50	50	850

Mini-project based on internal oral and project report.

Program Structure for BE Instrumentation Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VII

Course	Course Name	Te (C	aching Scl Contact Ho	neme ours)	Credits Assigned			
Code	Course Maine	Theo ry	Practic al	Tutoria l	Theory	Practic al	Tutori al	Total
ISC701	Industrial Process Control	4	-	-	4	-	-	4
ISC702	Biomedical Instrumentation	4	-	-	4	-	-	4
ISC703	Industrial Automation	4	-	-	4	-	-	4
ISDLO70 3X	Department Level Optional Course III	4	-	-	4	-	-	4
ILO701X	Institute Level Optional Course I	3	-	-	3	-	-	3
ISL701	Industrial Process Control – Lab Practice	-	2	-	-	1	-	1
ISL702	Biomedical Instrumentation – Lab Practice	-	2	-	-	1	-	1
ISL703	Industrial Automation – Lab Practice	-	2	-	-	1	-	1
ISL704	Department Level Optional Course III – Lab Practice	-	2	-	-	1	-	1
ISL705	Project I	-	6	-	-	3	-	3
	Total	19	14	-	19	07	-	26

		Examination Sch Theory	eme				
Course Code	Course Name	End Sem Exam (ESE)	Internal Assessment (IA)	Term Work	Oral	Pract. & Oral	Total
		Max Marks	Max Marks	Max Marks	Max Marks	Max Marks	
ISC701	Industrial Process Control	80	20	-	-	-	100
ISC702	Biomedical Instrumentation	80	20	-	-	-	100
ISC703	Industrial Automation	80	20	-	-	-	100
ISDLO7 03X	Department Level Optional Course III	80	20	-	-	-	100
ILO701 X	Institute Level Optional Course I	80	20	-	-	-	100
ISL701	Industrial Process Control – Lab Practice	-	-	25	25	-	50
ISL702	Biomedical Instrumentation – Lab Practice	-	-	25	25	-	50
ISL703	Industrial Automation – Lab Practice	-	-	25	25	-	50
ISL704	Department Level Optional Course III – Lab Practice	-	-	25	25	-	50
ISL705	Project I	-	-	50	50	-	100
Total		400	100	150	150	-	800

Program Structure for BE Instrumentation Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VIII

Course	Course Name	Teaching Scheme (Contact Hours)		Credits Assigned				
Code	Course Maine	Theo ry	Practic al	Tutoria l	Theory	Practic al	Tutori al	Total
ISC801	Instrumentation Project Documentation and Execution	4	-	-	4	-	-	4
ISC802	Instrument and System design	4	-	-	4	-	-	4
ISDLO80 4X	Department Level Optional Course IV	4	-	-	4	-	-	4
ILO802X	Institute Level Optional Course II	3	-	-	3	-	-	3
ISL801	Instrumentation Project Documentation and Execution	-	2	-	-	1	-	1
ISL802	Instrument and System design	-	2	-	-	1	-	1
ISL803	Department Level Optional Course IV – Lab Practice	-	2	-	-	1	-	1
ISL804	Project II	-	12	-	-	6	-	6
	Total	15	18	-	15	09	-	24

Examination Scheme for Semester VIII

			Exan	nination Scheme			
							Total Marks
		Theory					
Course Code	Course Name	End Sem Exam(ESE)	Internal Assessment (IA)	Term Work	Oral	Pract. & Oral	
		Max	Max	Max	Max	Max	
		Marks	Marks	Marks	Marks	Marks	
ISC801	Instrumentation Project Documentation and Execution	80	20	-	-	-	100
ISC802	Instrument and System design	80	20	-	-	-	100
ISDLO80 4X	Department Level Optional Course IV	80	20	-	-	-	100
ILO802X	Institute Level Optional Course II	80	20	-	-	-	100
ISL801	Instrumentation Project Documentation and Execution	-	-	25	25	-	50
ISL802	Instrument and System design	-	-	25	25	-	50
ISL803	Department Level Optional Course IV– Lab Practice	-	-	25	25	-	50
ISL804	Project II	-	-	100	50	-	150
Total		320	80	175	125	-	700

Department Level Optional Courses:

Subject Code	Subject Name
ISDLO5011	Advanced Sensors
ISDLO5012	Optimization Techniques
ISDLO5013	Database Management System
ISDLO5014	Fiber Optic Instrumentation

Subject Code	Subject Name
ISDLO6021	Material Science
ISDLO6022	Computer Organization and Architecture
ISDLO6023	Bio-sensors and Signal Processing
ISDLO6024	Nuclear Instrumentation

Subject Code	Subject Name
ISDLO7031	Image Processing
ISDLO7032	Digital Control System
ISDLO7033	Advanced Microcontroller Systems
ISDLO7034	Mechatronics
ISDLO7035	Building Automation

Subject Code	Subject Name
ISDLO8041	Expert System
ISDLO8042	Optimal Control System
ISDLO8043	Internet of Things(IOT)
ISDLO8044	Power Plant Instrumentation
ISDLO8045	Functional Safety

Institute Level Optional Courses

Subject Code	Institute level Optional Course - I
ILO7011	Product Lifecycle Management
ILO7012	Reliability Engineering
ILO7013	Management Information System
ILO7014	Design of Experiments
ILO7015	Operation Research
ILO7016	Cyber Security and Laws
ILO7017	Disaster Management and Mitigation Measures
ILO7018	Energy Audit and Management
ILO7019	Development Engineering

Subject Code	Institute level Optional Course - II
ILO8021	Project Management
ILO8022	Finance Management
ILO8023	Entrepreneurship Development and Management
ILO8024	Human Resource Management
ILO8025	Professional Ethics and Corporate Social Responsibility
	(CSR)
ILO8026	Research Methodology
ILO8027	IPR and Patenting
ILO8028	Digital Business Management
ILO8029	Environmental Management

From Co-coordinator's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated, and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai, has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's), course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of Studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enable a much-required shift in focus from teacher-centric to learner-centric education. Since the workload estimated is based on the investment of time in learning, not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes. Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. **Choice Based Credit and Grading System** were implemented for First Year of Engineering (Undergraduate) from the academic year 2016-2017. Subsequently this system will be carried forward for Second Year of Engineering (Undergraduate) in the academic year 2017-2018 and so on.

Dr. Suresh K. Ukarande Coordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai
Preamble:

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and to achieve recognition of the institution or program meeting certain specified standards. The main-focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a student will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as a Chairman, Board of Studies in Instrumentation Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Instrumentation Engineering, more than ten senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs and POs of undergraduate program in Instrumentation Engineering are listed below;

Program Educational Objectives (PEOs)

- Graduates will have successful career in industry or pursue higher studies to meet future challenges of technological development.
- Graduates will develop analytical and logical skills that enable them to analyze and design Instrumentation and Control Systems.
- Graduates will achieve professional skills to expose themselves by giving an opportunity as an individual as well as team.
- > Graduates will undertake research activities in emerging multidisciplinary fields.

Program Outcomes (POs)

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Dr. S. R. Deore, Chairman, Board of Studies in Electrical Engineering, Member - Academic Council University of Mumbai

Program Structure for TE Instrumentation Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester VI

Course	Course Name	Teac (Co	ching Sc ntact H	cheme ours)		Credits A	ssigned	
Code	Course Manie	Theory	Pract ical	Tutorial	Theory	Practical	Tutorial	Total
ISC601	Process Instrumentation System	4	-	-	4	-	-	4
ISC602	Industrial Data Communication	3	-	-	3	-	-	3
ISC603	Electrical machines and Drives	4	-	-	4	-	-	4
ISC604	Digital Signal Processing	4	-	-	4	-	-	4
ISC605	Advanced Control System	3	-	-	3	-	-	3
ISDL0602 X	Department Level Optional Course II	3	-	-	3	-	-	3
ISL601	Process Instrumentation System – Lab Practice	-	2	-	-	1	-	1
ISL602	Industrial Data Communication – Lab Practice	-	2	-	-	1	-	1
ISL603	Electrical machines and Drives – Lab Practice	-	2	-	-	1	-	1
ISL604	Digital Signal Processing – Lab Practice	-	2	-	-	1	-	1
ISL605	Advanced Control System – Lab Practice	-	2	-	-	1	-	1
ISL 606	Mini-project - II	-	2	-	-	1	-	1
Total		21	12	-	21	06	-	27

Subject code	Subject Name	Teaching scheme (Hrs)			Credit as	ssigned		
ISC 601	Process	Theory Pract Tut			Theory	Pract	Tut	Total
	Instrumentation	4	-	-	4	-	-	4
	System							

Sub	Subject Name	Exan	nination	ı scheme	•				
Code		Theo	ry (out	of 100)		Term	Pract	Oral	Total
		Internal			End	work	and		
		Assessment			sem		Oral		
		(out of 20)		20)	Exam				
		Test	Test	Avg.					
		1	2						
ISC	Process	20	20	20	80	-	-	-	100
601	Instrumentation								
	System								

Subject Code	Subject Name	credits							
ISC 601	Process Instrumentation System	4							
Course objective	1. To make the students to familiar with differen	t Process							
	Dynamics & process control actions.								
	2. Students are expected to learn classification & w	orking of							
	Controllers & Tuning Methods.								
	3. Students are expected to understand various control sci	Students are expected to understand various control schemes.							
	4. To familiarize concept of Multivariable Control & Dis	To familiarize concept of Multivariable Control & Discrete state							
	process control Requirement.								
Course Outcome	The students will be able to	udents will be able to							
	1. Understand & Learn Process Control Terminologies	s, Process							
	Dynamics & their mathematical model.								
	2. Understand different types of control actions & their se	election.							
	3. Learn Features & Classify controllers like electronic,	pneumatic							
	and hydraulic & their Tuning Techniques.								
	4. Learn various process control schemes & their application	tions and							
	selection.								
	5. Understand Multivariable Control systems & their Inte	raction							
	6. Develop relay logic for various processes & symbols.								

Details of Syllabus:

Prerequisite: Measurement of physical parameters, sensors/transducers and basic control system.

	Process Instrumentation System		
Modul	Content	Hrs	CO
e			Mapping
1	Introduction to Process Control	08	CO1
	Process Control Terminology, Development of Typical Process		
	Control loops like Pressure, Temperature, flow & Level. Process		
	characteristics, control system parameters, Dynamic elements in		
	a control loop, Dead time processes and smith predictor		
	compensator. Inverse response behaviour of processes and		
	compensator. Dynamic behaviour of first and second order		
	systems. Interacting and non-interacting systems. Development		

	of Mathematical Model for first & second order system with		
	Example.		
2	Process Control Actions	06	CO2
	Types-Discontinuous, continuous (P, I, D) and composite control		
	actions (PI, PD, and PID), Effects of control actions, selection		
	criteria.		
3	Process Controllers and Tuning	08	CO3
	Need for controller, General features, specifications,		
	classification & working of Pneumatic, Hydraulic and Electronic		
	controllers.		
	Need for controller Tuning. Tuning Methods-Process reaction		
	curve method, Ziegler-Nichols method, Cohen coon correction		
	for quarter amplitude, Frequency response method, Relay based		
	tuning. Concept of Auto Tuning. Introduction to Model based		
	Controller.		
4	Control Schemes	12	CO4
	Feedback, Feed forward, cascade, Ratio, split range, selective		
	control, adaptive control, inferential control, and selection		
	Guidelines.		~~~
5	Multivariable Control	06	CO5
	Introduction to SISO & MIMO systems, Block diagram analysis		
	of multivariable systems, Interaction, relative gain analysis,		
	Decoupler design		
6	Discrete-State process control	08	CO6
	Need for Discrete state process control systems, process		
	specification and event sequence description, Relay Logic		
	symbols, Development of Relay ladder Logic diagram and case		
	study examples.		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Books Recommended:

Text Books:

- 1. Curtis D. Johnson, "Process Control Instrumentation Technology", PHI /Pearson Education 2002.
- 2. George Stephanopoulos, "Chemical process control", PHI-1999.

Reference Books:

1. Bela G. Liptak, "Instrument Engineer's Hand Book - Process Control", Chilton Company, 3rd

Edition, 1995.

- 2. M.Chidambaram, "Computer Control of Processes", Narosa, 2002.
- 3.Deshpande P.B and Ash R.H, "Elements of Process Control Applications", ISA Press, New York, 1995.
- 4.D. Patranabis, "Principles of Process Control", Second edition, TMH.
- 5.F.G. Shinsky, "Process Control System", TMH.
- 6.N.E. Battikha, "Condensed Handbook of Measurement and Control", 3rd Edition., ISA Publication.
- 7. Donald P. Eckman, "Automatic Process Control", Wiley Eastern Ltd.
- 8. Franklyn W. Kirk, Nicholas R. Rimboi, "Instrumentation", First edition, 1996, D.

Suggested E Books:

- 1. Instrumentation & Controls- Process control Fundamental by PA Control.Com
- 2. Dr. M.J.Willis, "Conventional process control schemes"
- 3. Tony R Kuphaldt, "Lessons in Industrial Instrumentation"
- 4. W.C.Dunn, "Fundamentals of Industrial Instrumentation"

Subject	Subject Name	Teaching				Credits Assigned			
code		Theory	Prac	Tut.	Th	Pract.	Tut.	Total	
ISC602	Industrial Data Communication	3	-	-	3	-	-	3	

Subject			Examination Scheme								
		Т	heory(o	ut of 1	00)						
Code		Internal Assessment(out		Ter	Pract				
	Subject Name	Test1	Test	Avg.	sem	m	and				
		2	8	Exam	Wor	oral		1 otal			
ISC 602	Industrial Data	20	20	20	80	-	-	-	100		
	Communication										

Subject Code	Subject Name	Credits						
ISC602	Industrial Data Communication	3						
Course Objectives	1. To expose students to the basics of communication							
	2. To create awareness about the the OSI refrence model.							
	3. To acquaint the students with the different types of networks a various levels such as sensor level, device network and contronetwork.							
	4. To provide sufficient knowledge about the HART.							
	5. To impart the fundamentals of foundation field bus.							
Course Outcomes	The students will be able to							
	 Explain the importance of modulation in communication Examine the importance of OSI,TCP/IP model,various recomponents. Compare the different types of networks at various level communication. Use HART for communication Establish Foundation fieldbus communication. Investigate the various wireless devices. 	networking els of field						

Details of syllabus:

Prerequisite: Awareness of transmitters, different process loops, Basics of communication system.

Module	Content	Hours	СО
		liouis	Mapping
1.	Introduction to Communication System: Elements of communication system, Noise in communication Systems. Amplitude Modulation: Introduction, Time and frequency domain analysis, Frequency Modulation, Phase Modulation, Effect of noise in FM. Digital Modulation, PAM,PPM,PWM,FSK,QPSK.	08	CO1
2.	Introduction to Networks: OSI reference model, TCP/IP model, Transmission media, UTP- STP cable, co-axial cable, N/W components: Repeaters, bridge, hub, switch, router, gateways. Open Control N/W: RS232, RS422,EIA485 Modbus Structure, Implementation, GPIB. Proprietary Control N/W:Modbus Plus	05	CO2
3	Networks at different levels: Sensor level network: AS-i, CAN, Devicenet, Interbus and LON Device networks: Foundation Fieldbus H1-HART Profibus-PA Control Network: BACnet,control-net, FF-HSE, Profibus-DP, Ethernet, TCP/IP	08	CO3
4	HART: Architecture, Physical, Data Link, Application, Communication Technique, Normal and burst mode of communication, Troubleshooting, Benefits of HART	04	CO4
5	Foundation Fieldbus: Fieldbus requirement, features, advantages, fieldbus components, types, architecture–physical, data link, application layer, system and network management, wiring, segment functionality checking, installation in safe and hazardous area and troubleshooting, function block application process. OPC Architecture	06	CO5
6	Wireless Technologies: Satellite systems, Wireless LANs (WLANs), WiFi, VPAN, Zigbee, bluetooth GPRS and – their comparison, limitations and characteristics, Introduction to IOT and IIOT, RFID	05	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of
 - 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Deon Reynders, Steve Mackay, Edwin Wright, : "Practical Industrial Data Communications", 1st edition ELSEVEIR, 2005.
- 2. Lawrence M Thompson, : "Industrial Data Communication", 2nd edition , 1997.

- 1. Daniel T Miklovic, "Real Time Control Networks", ISA 1993.
- 2. Bela G Liptak, "Process Software and Digital Networks",3rd edition2002.
- 3. Andrew S. Tanenbaum, "Computer Networks", 4th edition, PHI/Pearson Education, 2002.
- 4. Behrouz A. Forouzan, "Data Communications and Networking", 2nd update edition, Tata McGraw Hill Publishing Company, New Delhi,2000.
- Douglas E.Corner, "Computer Networks and Internets"2nd edition, Pearson Education Asia,5th Indian reprint, 2001.

Subject code	Subject Name	Teaching s	cheme	Credit as	lit assigned			
ISC603	Electrical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Machines and	4	-	-	4	-	-	4
	Drives							

Sub	Subject Name	Examin	Examination scheme								
Code		Theory (out of 100)				Term	Pract.	Oral	Tota		
		Internal Assessment End			End	work	and		1		
		Test1	Test2	Avg.	Sem		Oral				
					Exam						
ISC603	Electrical	20	20	20	80	-	-	-	100		
	Machines and										
	Drives										

Subject Code	Subject Name	Credits		
ISC603	Electrical Machines and Drives	4		
Course	1. To learn the basic concept and characteristics of Electrical motion	ors.		
Objective	2. To equip the students with the knowledge of semiconductor de	vices&		
Ū į	their applications.			
Course Outcome	Students will be able to:			
	1. Explain working of DC motors and study their characteristics.			
	2. Describe the working principle of 3-phase I.M.			
	3. Discuss the constructional features of single-phase I.M.			
	4. Compare basic characteristics and ratings of power electronic c	levices.		
	5. Use controlled rectifiers, Inverters & choppers with different loads.			
	6. Illustrate working of AC & DC drives.			

Details of Syllabus:

Prerequisite: Knowledge of Faraday's laws, Lenz's law. Semiconductor devices such as diodes and transistors and their characteristics.

Module	Contents	Hrs	CO
			mapping
1	DC Machines: Types of DC motors, EMF equation	08	CO1
	generating & motoring action. Characteristics of DC motors.		
	Speed control methods of DC motors. Applications of DC		
	motors		
2	3-Phase Induction Motors: Construction& working	08	CO2
	principle of 3-phase IM. Slip, rotor frequency torque slip		
	characteristic, power stages in IM		
3	Fractional HP Motors: Construction & working principle	06	CO3
	of 1-phase I.M.split phase IM. Shaded pole IM Basic		
	concepts of Stepper Motor, Servomotor		
4	Semiconductor Devices: Introduction, characteristic, ratings	08	CO4
	& applications of power diode, power BJT, power MOSFET		
	& IBGT		
	Construction & characteristic, ratings of SCR, TRIAC		
	Triggering methods of Thyristors using DIAC,UJT & PUT		
	only.		
5	Applications of power semiconductor devices:	12	CO5
	Controlled Rectifier: Principle of operation of 1-phase		
	controlled converters, 1-phase half bridge & full bridge		

	converter performance with R-L load. Basic operation of 3-		
	AC power control with TRIAC-DIAC		
	Inverter: Principle of operation of basic inverter, bridge inverter, PWM inverter		
	DC-to-DC Converter: Basic operation of chopper, study of different types of chopper circuits like step up & step down chopper		
6	Drives:	06	CO6
	DC motor drives: 1-phase & 3-phase converter drives for continuous & discontinuous operation, chopper fed drive. AC motor drives and control: Control strategies of IM like stator voltage control & frequency control. Variable		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 6) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 7) Total 4 questions need to be solved.
- 8) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 9) Remaining questions will be mixed in nature.
- 10) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Sawhney A.K., Electrical & Electronics Measurement and Instrumentation, Dhanapat Rai &Co. Pvt Ltd
- 2. Nagrath I.J., Kothari D.P., Electrical Machines, second edition, Tata McGraw Hill, New Delhi.
- 3. B.L.Theraja, Fundamentals of Electrical & Electronics, S.Chand, Technical.
- 4. V.K. Mehta, Rohit Mehta, Principles of Electrical Engg. & Electronics, S.Chand
- 5. P.S. Bhimbra, Power Electronics, Khanna publishers, 2004
- 6. M. H. Rashid, Power Electronics, 2nd Edition, PHI, 2005

- 1. Say M.G., The performance & Design of Alternating Current Machines, 3rd edition, Oxford University
- 2. P.C. Sen, Power Electronics, Tata McGraw Hill, 2005
- 3. Mohan Undeland Robbins, Power Electronics- Converters application & Design, Wiley Eastern, 1996
- 4. Dubey, Dorald, Thyristorised Power Controller, Wiley Eastern Ltd. 1993
- 5. S.K. Datta, Power Electronics & control, PHI 1986
- 6. S.K. Bhattacharya, Industrial Electronics & Control, TATA McGraw Hill, 2007
- 7. B.K.Bose, Modern power Electronics & AC Drives Pearson Education Inc.2002

Subject code	Subject Name	Teaching scheme		Credit assigned				
ISC604	Digital Signal	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Processing	4	-	-	4	-	-	4

Sub	Subject Name	Examin	Examination scheme						
Code		Theory (out of 100)				Term	Pract.	Oral	Total
		Internal Assessment			End Sem	work	and		
		Test1	Test2	Avg.	Exam		Oral		
ISC604	Digital Signal	20	20	20	80	-	-	-	100
	Processing								

Subject Code	Subject Name	Credits						
ISC604	Digital Signal Processing	4						
Course	1. To introduce the basic concept of discrete time signal proce	ssing and						
Objectives	Acquired knowledge about DSP and its fundamentals.							
	2. To familiarize with Fourier transform algorithms and convolut sequences.	ion of DT						
	3. Ability to design IIR digital filter and realization of its structudifferent forms.	lity to design IIR digital filter and realization of its structures using erent forms.						
	4. To design FIR filter using different methods.							
	5. To understand the basic concept of DSP processor and Adaptiv	iderstand the basic concept of DSP processor and Adaptive filtering						
	for practical applications.	-						
Course	Students will be able to -							
Outcomes	1. Describe the basic concept of discrete time signal processing	g such as						
	sampling, aliasing, concept of DSP.	-						
	2. Demonstrate an ability to apply Discrete Fourier Transform, Fa	st Fourier						
	transform and convolution techniques to signals.							
	3. Apply the concepts of all-pass and minimum-phase systems to	o analyses						
	the LTI system, Also realization of system by direct form I, II,	, Cascade,						
	Parallel and Structure form.							
	4. Design FIR filter by different techniques.							
	5. Describe how IIR filters are designed and Implemented by methods.	different						
	6. Explain DSP processors and adaptive filters such as LMS,	RLS for						
	various applications.							

Details of Syllabus:

Prerequisite: Knowledge of Fundamentals of Engineering Mathematics, Knowledge of Signals and Systems, Basic programming skill

Module	Contents	Hrs	CO
			mapping
1	Introduction:- Review of discrete time signals and systems,	04	CO1
	Basics of Z transform, Block diagram of DSP, Advantages and		
	applications, Sampling theorem, Reconstruction of signals,		
	Aliasing.		
2	Discrete Fourier Analysis: - DFT and its property, Decimation	12	CO2
	in time FFT algorithms, Decimation in frequency FFT		
	algorithms, convolution by DFT, Overlap add and Overlap save		
	method, Goertzel algorithm, The chirp Z transform algorithm		
3	Analysis of Digital Filter: - Classification of filter on their pole	06	CO3
	zero diagram.		
	Frequency response of IIR filters frequency response analysis		
	of all types of linear phase system. Difference between IIR and		
	FIR Filters.		
	Realization of systems: -Realization of IIR systems by Direct		
	Form-I, Direct form-II, Cascade and Parallel. Realization of		
	FIR systems by Direct form, cascade and linear phase system.		
	Lattice structures.		
4	Design of digital FIR filters:- Classification of filters, Ideal	08	CO4
	filter characteristics, Symmetric and asymmetric FIR filters,		
	Minimum Phase and All pass filters, FIR filter design by		
	window technique and frequency sampling method, Linear		
	phase and Zero phase filters, Hilbert transform.		
5	Design of digital IIR filters:- Comparison with FIR filters,	10	CO5
	Review of Analog filters, Butterworth, Chebyshev		
	approximations, Frequency transformation, Design of digital		
	IIR filters using Bilinear transformation method, Impulse		
	Invariant transformation method, Pole zero placement method,		
	Matched Z transform (MZT) method.		
6	Recent trends in DSP system design: - Introduction,	08	CO6
	Architecture of TMS 320C54X, CPU, Arithmetic logic unit,		
	Multiplier/Adder unit, Engineering applications of DSP		
	processors. Introduction to adaptive filters: -Need of Adaptive		
	filter and its application areas, Least mean square (LMS) filter,		
	Recursive least square(RLS) filter.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

University of Mumbai, Instrumentation Engineering, Rev 2016-17

Text Books:

- 1. Oppenheim, Schafer, "Discrete-Time Signal Processing", PHI,3rd edition, 2009.
- 2. John G. Proakis, "Digital Signal Processing", Pearson ,4th edition, 2007.
- 3. Sanjit K. Mitra, "Digital Signal Processing", McGraw Hill, 4nd edition, 2013.
- 4. Emmanuel Ifeachor, "Digital Signal Processing: A Practical Approach", PHI,2nd edition, 2001.
- 5. Vinay Ingale, "Digital signal processing using MATLAB", Cengage, 3rd edition, 2012.
- 6. Richard Lyons, "Understanding Digital Signal Processing" PHI, 1st edition, 2001.

- 1. Thomas J. Cavicchi, "Digital Signal Processing" Wiley, 1st edition, 2009.
- 2. B. Venkataramani, M Bhaskar, "Digital Signal Processors", McGraw Hill, 2ndedition, 2010.
- 3. Chi-Tsong Chen, "Digital Signal Processing: Spectral Computation", Oxford, 1stedition, 2007.
- 4. Dr.Shaila D. Apte, "Digital Signal Processing" Wiley, 2nd edition, 2009.
- Robert A. Schilling," Introduction to Digital Signal Processing using MATLAB", Cengage, 2nd edition, 2012.
- 6. Ramesh Babu, "Digital Signal Processing" Scitech, 4thedition, 2011.
- Monson H. Hayes, "Schaums Outline of Digital Signal Processing", McGraw Hill, 2ndedition,2010.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISC605	Advanced Control	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	System	3	-	-	3	-	-	3

Sub	Subject Name	Examin	Examination scheme						
Code		Theory (out of 100)				Term	Pract.	Oral	Total
		Internal Assessment			End Sem	work	and		
		Test1	Test2	Avg.	Exam		Oral		
ISC605	Advanced	20	20	20	80	-	-	-	100
	Control System								

Subject Code	Subject Name	Credits					
ISC605	Advanced Control System	3					
Course	To make students understand -						
Objectives	1. the concept of nonlinear control system, and different lin	earization					
	methods to linearize the nonlinear system.						
	the concept of sliding mode control and its features.						
	3. the stability analysis of nonlinear control system through a	the stability analysis of nonlinear control system through describing					
	function and Lyapunov's method.						
	4. the concept of Internal Model Control and its application i	in control					
	engineering						
	5. the importance of adaptive control system with their differen	t types in					
	control engineering as well as in process industries						
	6. the basic concept of Optimal Control.						
Course	The Students will be able to -						
Outcomes	1. Differentiate linear and nonlinear system, study characte	ristics of					
	2 Perform linearization of the nonlinear systems by using lin	earization					
	techniques.	cuillation					
	3. Construct phase-plane trajectories, study behavior of limit	cycle and					
	concept of sliding mode control.	5					
	4. Investigate the stability of nonlinear system by describing method.	function					
	5. Investigate the stability of nonlinear system by Lyapunov's met	thod					
	6. Design and develop the IMC structure for particular sys	tem with					
	Uncertainty and Disturbances.						

Details of Syllabus:

Prerequisite: Knowledge of Linear algebra, Fourier Series, and Nyquist stability criterion.

Module	Contents	Hrs	CO
			mapping
1	Nonlinear Control Systems	02	CO1
	Definition of nonlinear systems, Difference between linear		
	and nonlinear systems, characteristics of nonlinear systems,		
	Common physical nonlinearities.		
2	Linearization Methods	02	CO2
	Jacobian Linearization, Concept of relative degree,		
	feedback linearization for systems with no internal		
	dynamics.		

3	Phase plane Analysis Basic concepts, phase trajectories, phase portrait, Constructing phase portraits by analytical method, Graphical Method -Delta Method Singular points and their classification, limit cycles and behaviour of limit cycles. Introduction to Sliding Mode Control.	08	CO3
4	Describing Function Analysis Describing Function Fundamentals, Describing Functions of saturation, dead zone, relay and their combinations, Stability analysis of nonlinear systems via describing function method.	08	CO4
5	Lyapunov Stability Analysis Stability of equilibria, Asymptotic stability, Lyapunov stability theorems, Stability analysis of linear systems, Construction of Lyapunov functions using Krasovskii method and variable gradient method.	08	CO5
6	Internal Model Control Introduction to Model-Based Control, Open loop controller Design, Model Uncertainty and Disturbances, Development of IMC structure, IMC-Based PID Controller Design	08	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. I. J. Nagrath and M. Gopal, Control System Engineering, 3rd Edition, New Age International (P) Ltd., Publishers 2000.
- 2. K. Ogata, Modern Control Engineering, Prentice Hall of India, 4th edition, 2002.
- **3.** Dr. K.P. Mohandas, "Modern Control Engineering", revised edition, Sanguine Publishers, Bangalore, 2006.

- 1. Gene F. Franklin, J David Powell, Abbas Emami-Naeini, "Feedback Control of Dynamic Systems", 5th edition Pearson Educations.
- 2. Shankar Sastry, Marc Bodson, "Adaptive Control", Prentice Hall of India (P) Ltd., 1993.
- 3. John Doyle, Bruce Francis, Allen Tannenbaum, "Feedback Control Theory".
- 4. Pierre R. Belanger, "Control Engineering", Saunders college Publishing. University of Mumbai, Instrumentation Engineering, Rev 2016-17

- 5. Norman Nise, "Control System Engineering", 4th edition Wiley International Edition.
- 6. Christopher Edwards, Sarah K. Spurgeon, "Sliding Mode control: Theory and Application", 1998.
- Karl J. Astrom, B. Wittenmark, "Adaptive Control", 2nd Edition, Pearson Education Asia, First Indian Reprint, 2001
- 8. Stanislaw H. Zak, "Systems and Control", Indian Edition, Oxford University Press, 2003.
- 9. Donald E. Kirk, "Optimal Control Theory- An Introduction",
- 10. M. Gopal, "Modern Control System Theory", Wiley Eastern Ltd., New Delhi.

Sub code	Subject Name	Teaching Scheme			Credits Assigned			
		Theory	Pra	Tut.	Theory	Pract.	Tut.	Total
ISDLO6021	Material Science	3	-	-	3	-	-	3

		Examination Scheme							
		Theory Marks 100							
Sub code	Subject Name	Asso Test1	Internal essment(<u></u> Test2	20) Avg.	End sem Exam	Term Work	Pract and oral	Oral	Total
ISDLO6021	Material Science	20	20	20	80	-	-	-	100

Subject Code	Subject Name	Credits
ISDLO 6021	Material Science	3
Course Objectives	1. To understand the fundamentals of Material Scie Metallurgy.	ence and
	2. To create awareness about the different mechanical to industry.	esting in
	3. To determine the mechanical properties of metal, n and alloys.	on-metal
Course Outcomes	The students will be able to	
	 Classify and brief the properties of materials. Describe about the mechanical testing. Explain structure of materials. Acquire knowledge about heat treatment of steel Examine micro-macro metals. 	
	6. Analyze different non ferrous alloys	

Details of Syllabus :

Prerequisite: Knowledge of metals ,non-metals and basic physics.

Module	Content	Hrs.	СО
			Mapping
1	Classification and properties of material	06	CO1
	Metal, non-metal such as ceramic, plastic and polymers, composite material		
	Structure of material: Structure, general relationship of structure level to various engineering properties, atomic structure, bonding in solid, atomic arrangement in solid, crystal structure of metal, space lattice, unit cell, indexing of lattice plane and direction, plastic deformation, mechanism, deformation of single crystal and polycrystalline metals, imperfection in crystal, dislocation theory of slippage, work hardening, strengthening mechanism in		
2	Mechanical Testing	06	CO2
	Tension test, engineering and true stress-strain curves, evaluation of properties, ductility, brittleness and toughness. Types of engineering stress-strain curve, compression test. Hardness testings- Brinell hardness Test, Poldi hardness Test, Rockwell hardness Test, Vickers hardness Test. Durometers, micro hardness. Relation among the various hardness test and hardness to tensile		
3	Equilibrium diagrams:	06	CO3
	Related terms and their definitions, construction, common types of equilibrium diagrams, rules of solid solubility, Gibb's phase rules and non-equilibrium cooling. Plane carbon steel, iron- carbon phase diagram, classification of iron carbon alloys, classification, properties & application of steel. Alloy steel: effects of alloying element, function and uses of alloying elements.		
4	Heat transfer of steel:	06	CO4
	Principal of heat treatment, phase transformation in steel during heating, transformation of Austenite during cooling, time- temperature transformation diagram, critical cooling rate, continuous transformation diagram,		
	tempering, and case hardening,		
	Hardenability of steel, significance of hardenability, the jominy- end quench test, other hardening heat treatment such as hardening, tempering, annealing.		

5	Macro and micro examination of metals	06	CO5
	Macro examination: Specimen preparation, Sulphar painting, flow lines, welded section, Micro examination: Grinding, polishing, etching, optical metallurgical microscopy.		
	Cast Iron: Classification, grey and white cast iron, modular and ductile iron, malleable cast iron, alloyed cast iron, effects of various parameter on structure and properties of cast iron, Application and heat treatment of cast iron.		
6	Engineering non-ferrous alloys Brass, Bronze, Tin, Aluminum, Silicon, Beryllium bronze, Copper nickel alloy, aluminum alloys, titanium and its alloy, solder and bearing material, Common applications and some specification of various non-ferrous alloys in field such as 1. Die casting industry, 2. Automobile 3. Aircraft industry	06	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books :

- 1. Davis H.E. Trcxell G.E. &Wickocil C.T., "Testing of Engg. Materials", McGrawHill Book Co. Inc.
- 2. Smith W. F.,:"Principles of material science", Addison Welsey Publishing Co. Inc.
- 3. V. D. Kodgire,:" Material Science and Metallurgy for engineers", Everest publishing House, Pune
- **4.** Van Valck L.H. ,:"Principle of material science and engineering", Addison Wesley Publication Co. Inc.
- 5. B. K. Agrawal ,:" Introduction to engineering materials", Tata Mcgraw Hill Co. Ltd

Reference Books :

- 1. ASM Handbook : Surface Engineering Volume 5.
- 2. TME Handbook : Material, Finishing and coating Volume 3.

University of Mumbai, Instrumentation Engineering, Rev 2016-17

Subject		Teaching Sc	Credit Assigned					
code	Subject Name	Theory	Pract	Tut •	Theory	Pract •	Tut •	Tota l
ISDL06022	Computer Organization and Architecture	3	-	-	3	-	-	3

Subject code	Subject Name			aminatio	on Scheme				
		Tł	heory (ou	ut of 10	0)		Pract		
		Internal Assessment (out of 20) End sem			End sem	End sem Term Work	and Oral	Oral	Tota 1
		Test 1	Test 2	Avg	Exam	Exam ora			
ISDL06022	Computer Organization and Architecture	20	20	20	80	-	-	-	100

Subject Code	Subject Name	Credits
ISDL06022	Computer Organization and Architecture	3
Course Objectives	 To conceptualize the basics of organizational and architectura of a digital computer. To analyse performance issues in processor and memory desi digital computer. To understand various data transfer techniques in digital com To analyse processor performance improvement using ir level parallelism. 	al issues gn of a puter. Istruction
Course Outcomes	 The students will be able to: To describe basic structure and operation of a digital compute To design fixed-point and floating-point addition, subtraction multiplication & division and other arithmetic unit algorithms To describe the different ways of communicating with I/O de and standard I/O interfaces. To analyze the hierarchical memory system including cache memories and virtual memory. To describe pipelining and its Hazards To Explain the Pentium processor Hardware design 	er. I, s. vices

Module	Topics	Hrs.	CO Mapping
1	Basic Structure of Computers : Functional UNIT computer, Difference between CO & CA. System Bus, Data Types, Instruction Cycle, Instruction cycle with interrupt	04	CO1
2	ComputerArithmeticIntroduction: FixedPointRepresentation, Floating - Point Representation (IEEE-754)Addition and subtraction, Multiplication Algorithms (BoothMultiplicationAlgorithm), DivisionPoint Arithmetic operations.	08	CO2
3	Micro Programmed Control: Control Memory, micro code Sequencing, Micro program Examples, Functional description of Control Unit, Hard Wired Control unit, Micro programmed Control unit.	06	CO3
4	The Memory System: Basic Concepts of Semiconductor RAM Memories, Read-Only Memories, Memory hierarchy, Cache Memories organization, Virtual Memories, Introduction to RAID basic structure.	09	CO4
	Input-Output Organization: Peripheral Devices, Input-Output Interface, Direct Memory Access, Input-Output Processor (IOP), Serial Communication; Introduction to Interconnect (PCI) Bus.		
5	Pipeline And Vector Processing: Flynn's taxonomy, Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline and Pipeline Hazards.	05	CO5
6	Case Study :Pentium architecture Overview, Bus operations, Pipelining, Branch Prediction, Instruction and Data Cache, Floating Point Unit	04	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination:

- 1. Question paper will comprise of 1 compulsory question of 10 marks and 5 questions, each carrying 20 marks, out of which 3 questions need to be solved.
- 2. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books :

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw-Hill.
- 2. John P. Hayes, "Computer Architecture and Organization", Third Edition.
- 3. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.

- 1. B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, Tata McGraw-Hill.
- 2. Dr. M. Usha and T. S. Srikanth, "Computer System Architecture and Organization", First Edition, Wiley-India.
- 3. Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications with the 8085", Fifth Edition,Penram.
- 4. The Intel Family Of Microprocessors: Hardware and Software Principles and Applications Author: James L. Antonakos

Subject Code	Subject Name	Teachi	ng Schem	e (Hrs)	Credit Assigned			
ISDLO6023	Bio- Sensors	Theor Pract. Tut.			Theory	Pract.	Tut.	Total
	and Signal Processing	3	-	-	3	-	-	3

Sub Code	Subject	Examination Scheme							
	Name	Theory (out of 10			00)	Term	Pract.	Oral	Total
		Inter	Internal Assessment		End	work	and		
		Test	Test2	Avg.	sem		Oral		
		1			Exam				
ISDLO6023	Bio-								
	Sensors	20	20	20	80	-	-	-	100
	and Signal	20	20	20	80				
	Processing								

Subject Code	Subject Name	Credits							
ISDLO6023	Bio-Sensors and Signal Processing	3							
Course objectives	1. To provide basic knowledge of various bio-sensors an	d their							
	uses in biomedical applications.								
	2. To provide understanding of principle and operation c	of different							
	types of bio-sensors like potentiometric, optical and	types of bio-sensors like potentiometric, optical and							
	amperiometric sensors.								
	3. To introduce the students to basic signal processing m	ethods							
	used in bio-signal measurement and analysis.								
Course Outcomes	Students mould be able								
Course Outcomes	Students would be able								
	1. To describe the basic concept behind bioelectric phene	omena.							
	2. To classify the different types of bio-sensors and desc	ribe their							
	characteristics.								
	3. To distinguish between the different biosensors used f	or							
	physical and chemical measurands.								
	4. To explain the various types of transducers found in b	iosensors							
	and their significance.								
	5. To explain about the various basic signal processing to	echniques							
	used in bio-signal acquisition and analysis.								
	6. To apply the appropriate biosensor for different applic	cations.							

Prerequisite: Knowledge about bio-signals and their specificat	ions, Knowledge about the basic
working principle of various transducers	

l	Module	lle Contents		СО
				Mapping
	1	Bioelectricity and Bio-electric Phenomena Sensors / receptors in the human body, basic organization of nervous system-neural mechanism and circuit processing. Electrode theory, electrode-tissue interface, metal-electrolyte interface, electrode-skin interface, electrode impedance, electrical conductivity of electrode jellies and creams.	04	CO1
	2	Introduction to biological sensors Sensor architecture and Classification of biosensors: Medically significant measurands, functional specifications of medical sensors; Bio-sensor characteristics: linearity, repeatability, hysteresis, drift; Bio-sensor models in the time & frequency domains.	04	CO2
	3	Physical and Chemical Biosensors Bio-sensors for physical measurands: strain, force, pressure, acceleration, flow, volume, temperature and bio potentials. Bio- sensors for measurement of chemicals: Potentiometric sensors, ion selective electrodes, Amperometric sensors, Clark Electrode biosensors, Catalytic biosensors, Immuno-sensors.	09	CO3
	4	Transducers in Biosensors Various types of transducers; principles and applications - Resistive, Capacitive, Inductive, Photoelectric, piezoelectric, mechanical and molecular electronics based transducers in biosensors. Chemiluminiscene - based biosensors, Liquid and solid ion exchange membrane electrode, Enzyme electrode, Principle of fiber optic cable, fiber optic sensors, Photo acoustic sensors in biomedical field.	09	CO4
	5	Bio-signal Acquisition and Processing Measuring ultra-small signals, noise. Electrical signals produced by cells, Various types of signal processing techniques used for bio-signals.	05	CO5
	6	Applications of Biosensors Biosensors in clinical chemistry, medicine and health care, biosensors for veterinary, agriculture and food, Low cost- biosensor for industrial processes for online monitoring; biosensors for environmental monitoring.	05	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.

University of Mumbai, Instrumentation Engineering, Rev 2016-17

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Richard S.C. Cobbold, "Transducers for Biomedical Measurements: Principles and Applications", John Wiley & Sons, 1992.
- 2. A.P.F. Turner, I. Karube & G.S. Wilson, "Biosensors: Fundamentals & Applications", Oxford University Press, Oxford, 1987.
- 3. Rangan C.S., Sarma G.R., and Mani V.S.V., "Instrumentation devices and system", Tata McGraw Hill Publishing Company limited, New Delhi, 2006.
- 4. John G.Webster, "Medical Instrumentation: Application and Design", John willey and sons, 1999.
- 5. Jacob Kline, "Handbook of Bio Medical Engineering", Academic press Inc., Sandiego, 1988.

- 1. Richard Aston: Principles of Biomedical Instrumentation and Measurement, Merril Publishing Co., Columbus, 1990.
- 2. Ernest O. Doeblin: Measurement Systems, Application and Design, McGraw-Hill, 1985.
- 3. R. S. Khandpur, "Handbook of Biomedical Instrumentation", Tata McGraw Hill.

Subject code	Subject Name	Teaching	Scheme	Credit Assigned			
		Theory	Pract. / Tut.	Theory	Pract. / Tut.	Total	
ISDL06024	Nuclear Instrumentation	3	-	3	-	3	

Sub Code	Subject Name	Examinat Theory(out of 100)				ion Scher Term work	me Pract. and	Oral	Total
		Internal Assessment		End sem	WOIR	Oral			
		Test1	Test2	Avg.	Exam				
ISDLO6024	Nuclear Instrum entation	20	20	20	80	-	-	-	100

Subject Code	Subject Name	Credits				
	Nuclear Instrumentation	3				
ISDL06024						
Course Objectives	1. To introduce the basic concept of radioactivity, prop	perties of				
	alpha, beta and gamma rays and study various radiation d	letectors				
	2. To study the electronics and counting systems					
	3. To study applications of nuclear instrumentation in medicines,					
	Industry and in Agriculture.					
Course Outcomes	Students would be able					
	1. To explain basics of radioactivity, properties of alpha,	beta and				
	gamma rays.					
	2. To compare construction and working of various	radiation				
	detectors.					
	3. To describe electronics and counting systems used in	n nuclear				
	instrumentation to process nuclear detector signal.					
	4. To list various factors influencing resolution of gamm	a energy				
	spectrum and specifications of nuclear ADC.					
	5. To apply nuclear radiation detectors in medicine					
	6. To apply nuclear instrumentation in industry.					

Pre-Requisites: Students should know the basics of digital, analog electronics and signal conditioning circuits which is required in understanding the working of nuclear instruments.

Module	Topics	Hrs.	CO
1	Radioactivity : General properties of Nucleus, Radioactivity, Nature	06	CO1
	of Nuclear Radiation's, Properties of Alpha, Beta and Gamma rays,		
	Natural and artificial radio-activity. Radioactivity Laws, Half-life		
	period, radioactive series, Isotopes and Isobars, Various effects-		
	photoelectric, Compton scattering and pair production, stopping		
	power and range of charged nuclear particles.	10	GOA
2	Radiation Detectors : Techniques for radiation detection, Detectors	12	CO2
	for Alpha, beta and gamma rays, Detector classification, Gas filled		
	detectors - volt ampere characteristics, Ionization chamber,		
	Proportional counter, Geiger Muller counter, Designing features,		
	Scintillation detectors, Photomultiplier tube, dark currents, pulse		
	resolving power, efficiency of detection, Solid state detectors		
	(Lithium ion drifted – Si-Li, Ge-Li, Diffused junction, surface		
2	Electronics and Counting systems. Dro own sharing amplification	04	CO3
3	Discriminators, Scalars and count rate maters, Pulse sharing mark	04	COS
	stratabers, photon counting system block diagram single channel		
	shetchers, photon counting system block diagram, single channel analyser SCA (pulse height analyser, PHA). Coincidence detection		
1	Nuclear Spectroscopy systems: Eactors influencing resolution of	04	CO4
7	gamma energy spectrum. Energy resolution in radiation detectors	04	04
	Multichannel analysers (MCA) Role of Nuclear ADC's –		
	performance parameters		
5	Radiation Monitors & Application in Medicines : Radiation uptake	06	CO5
6	studies – block diagram and design features. Gamma camera –	00	000
	design, block diagram, medical usage. Nuclear instrumentation for		
	health care, Radiation Personnel Health Monitors like neutron		
	monitors, Gamma Monitors, Tritium monitors, Iodine monitors and		
	PARA (particulate activity radiation alarms).		
6	Industrial Applications: Basic Nuclear Instrumentation system -	04	CO6
	block diagram, Personal monitors like Thermo Luminescence		
	Detectors (TLD). Dosimeters, Tele-detectors. Nuclear		
	Instrumentation for power reactor. Nuclear Instrumentation for		
	Toxic fluid tank level measurement, weighing, thickness gauges,		
	Agriculture applications like food irradiation, Underground Piping		
	Leak detection, water content measurement etc.		

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4
- to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 4. G.F. Knoll, "Radiation Detection & Measurement", 2nd edition, John Wiley & Sons, 1998.
- 5. P.W. Nicholson, "Nuclear Electronics", John Wiley, 1998.
- 6. S.S. Kapoor & V.S. Ramamurthy, "Nuclear Radiation Detectors", Wiley Easter Limited, 1986.

- 1. Gaur & Gupta, "Engineering Physics", Danpat Rai & Sons, 2001.
- 2. Irvin Kaplan, "Nuclear Physics", Narosa, 1987.
- 3. M.N. Avdhamule & P.G. Kshirsagar, "Engineering Physics", S.Chand & Co., 2001.
- 4. R.M. Singru, "Introduction to Experimental Nuclear Physics", Wiley Eastern Pvt. Ltd., 1974.
- 5. Hand Book of Nuclear Medical Instruments, Edited by B.R.Bairi, Balvinder Singh, N.C. Rathod, P.V. Narurkar, TMH Publishing New Delhi, 1974.

Subject code	Subject Name	Teaching	g schem	e	Credit assigned			
ISL601	Process	Theory	Pract	Tut	Theory	Pract	Tut	Total
	Instrumentation	-	2	-	-	1	-	1
	System- Lab							
	Practice							

Sub	Subject Name	Examination scheme								
Code						Term	Pract.	Oral	Total	
		Inter	rnal		End	work	And			
		Assessment		sem		oral				
					exam					
		Tes	Test	Avg						
		t	2							
		1								
ISL 601	Process	-	-	-	-	25	-	25	50	
	Instrumentation									
	System- Lab									
	Practice									

Subject Code	Subject Name	Credits							
ISL 601	Process Instrumentation System- Lab Practice	ss Instrumentation System- Lab Practice 1							
Course objective	1. To make the students to familiar with differen	To make the students to familiar with different Process							
	Dynamics & process control actions.	Dynamics & process control actions.							
	2. Students are expected to learn classification & w	orking of							
	Controllers & Tuning Methods.	Controllers & Tuning Methods.							
	3. Students are expected to understand various control sci	hemes.							
	4. To familiarize concept of Multivariable Control & Dis	crete state							
	process control Requirement.	process control Requirement.							
Course Outcome	The students will be able to	udents will be able to							
	1. Understand & Learn Process Control Terminologies	Understand & Learn Process Control Terminologies, Process							
	Dynamics & their mathematical model.								
	2. Understand different types of control actions & their se	election.							
	3. Learn Features & Classify controllers like electronic,	pneumatic							
	and hydraulic & their Tuning Techniques.								
	4. Learn various process control schemes & their application	tions and							
	selection.								
	5. Understand Multivariable Control systems & their Inte	raction							
	6. The students will be able to develop relay logic for var	ious							
	processes & symbols.								

Syllabus: Same as that of Subject ISC601 Process Instrumentation System.

List of Laboratory Experiments:

Sr. No.	Detailed Content	CO Mapping
1	Study Features & operation of ON-OFF Controller & its Application.	CO3
2	Familiarization of various control actions (pure and composite) using PID controller with Real time Process OR Simulator.	CO2
3	Testing Features, specifications, wiring & operation of an electronic PID controller.	CO3
4	Tuning of an Electronic PID controller.	CO3
5	Analysis of Feedback Control using Level / Pressure / Flow / Temperature Control Loop.	CO4
6	Study Feed Forward Control system using Temperature control Loop.	CO4
7	Study of split range control system using Pressure Control set up.	CO4
8	Study of Ratio control system using Flow Control Loop.	CO4
9	Study of Cascade control system.	CO4
10	Study Dynamic behaviour of First Order Hydraulic system.	CO1
11	Study Dynamic behaviour of Second Order Hydraulic system.	CO1
12	Development & Implementation of Relay Ladder Logic for Discrete state process control system.	CO6
13	Assignment on Relative gain analysis.	CO5

Note:

*Factory / Industrial visit is suggested to understand the Practical knowledge of the subject.

Oral Examination:

Oral examination will be based on Laboratory work & Entire syllabus.

Term Work:

Term work shall consist of minimum eight experiments.

The distribution of marks for term work shall be as follows:	
Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs/assignments / journal)	: 10 Marks
Attendance (Class Room & Laboratory)	: 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Sub	Cubico (Nomo	Teaching Scheme(Hrs)			CreditsAssigned			
code	Subjec invalle	Theory	Pract.	Tut.	Theor	Pract.	Tut.	Total
					у			
ISL602	Industrial Data Communication- Lab Practice	-	2	-	-	1	-	1

				Ех	amination Scheme				
Sub Code	Subject Name	T I Asse	<u>Theory(ou</u> nternal ssment(oo of20)	<u>ut of1(</u> out	D0) End sem	Term Work	Pract and oral	Oral	Total
		Test1	Test 2	Avg.	Exam				
ISL602	Industrial Data Communication- Lab Practice	-	-	-	-	25	-	-	25

Subject Code	Subject Name	Credits					
ISL602	Industrial Data Communication-Lab Practice	1					
Course Objectives	1. To expose the students to the basics of communication						
	2. To create awareness about the the OSI refrence model						
	3. To acquaint the students with the different types of no	etworks at					
	various levels such as sensor level, device network as	nd control					
	network.						
	4. To provide sufficient knowledge about the HART.						
	5. To impart the fundamentals of foundation field bus.						
Course Outcomes	The students will be able to						
	 Explain the importance of modulation in communication. Examine the importance of OSI,TCP/IP model,various n components. Compare the different types of networks at various leve communication. Use HART for communication Establish Foundation fieldbus communication. Investigate the various wireless devices 	etworking ls of field					

Syllabus: Same as that of Subject ISC602 Industrial Data Communication.

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
1	To Study the various modulation techniques(AM,FM,PWM)	CO1
2	To Study the networking components	CO2
3	To understand LAN	CO3
4	To study HART Protocol.	CO4
5	To calibrate various transmitters using HART	CO4
6	To study the components of Foundation Field Bus.	CO5
7	To study Zigbee	CO6
8	Assignment on MODBUS protocol.	CO3
9	Assignment onEthernet.	CO3
10	Assignment on application of IOT	CO6

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments)	: 10 Marks
Laboratory work (programs / journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL603	Electrical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Machines and	-	2	-	-	1	-	1
	Drives – Lab							
	Practice							

Sub	Subject Name	Exami	Examination scheme							
Code						Term	Pract.	Oral	Total	
		Internal Assessment			End	work	and			
					sem		Oral			
					Exam					
		Test1	Test2	Avg						
ISL603	Electrical	-	-	-	-	25	-	25	50	
	Machines and									
	Drives– Lab									
	Practice									

Subject Code	Subject Name	Credits						
ISL603	Electrical Machines and Drives – Lab Practice 1							
Course Objectives	1. To learn operation & speed control methods of e	electric motors.						
	2. To learn operations of semiconductor devices &	2. To learn operations of semiconductor devices & their applications.						
Course Outcomes	Students will be able to							
	1. Perform speed control of DC motor by different methods							
	2. Describe working principle of three-phase and single -phase							
	induction motors.							
	3. Study the characteristics of semiconductor device	es						
	4. Use semiconductor devices to build different circ	cuits						
	5. Apply drives for speed control of DC motor.							
	6. Discuss the working of AC drive for I.M.							

Syllabus same as that of subject ISC603 Electrical Machines and Drives

List of Laboratory Experiments:

Sr. No.	No. Detailed Contents				
		mapping			
1	Speed control methods of DC motor	CO1			
2	Starting of 3-phase IM by DOL/Autotransformer/rotor resistance method	CO2			
3	Study of different types of fractional horse power motor	CO2			
4	Plot V-I characteristics of SCR	CO3			
5	Plot V-I characteristics of Triac	CO3			

6	Triac based AC power control circuit.	CO3
7	Half wave & full wave controlled rectifier	CO4
8	SCR Based Inverter	CO4
9	MOSFET/IGBT Based Inverter	CO4
10	DC motor speed control drive	CO5
11	AC drive for I.M.	CO6

**Any other additional experiments based on syllabus which will help students to understand topic/concept.

Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum Eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 05 Marks
	1

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL604	Digital Signal	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Processing- Lab	-	2	-	-	1	-	1
	Practice							

Sub	Subject Name	Examination scheme							
Code						Term	Pract.	Oral	Total
		Interna	al Assessi	ment	End sem	work	and		
					Exam		Oral		
		Test1	Test2	Avg.					
ISL604	Digital Signal	-	-	-	-	25	25	-	50
	Processing-								
	Lab Practice								

Subject Code	Subject Name	credits
ISL604	Digital Signal Processing- Lab Practice	1
Course objectives	Study simulation software platform for digital signal processing and	
	Plot different type of signals.	
	To understand the concept of linear, circular convolution, correlation	
	and simulate it by computer software.	
	. To understand Fourier transform and its algorithms such as FFT and	
	IFFT and simulate it.	
	. To design and implement filters both FIR and IIR using computer	
	simulation.	
	5. To study DSP processors, adaptive filters and their applica	tions.
Course Outcomes	Students will be able to -	
	1. Verify sampling theorem using simulation software.	
	2. Demonstrate DT Fourier analysis, convolution and	correlation
	concept using simulation software.	
	. Perform Fast Fourier Transform of signals.	
	4. Design and implement FIR and IIR filters using computer	simulation
	software platform.	
	5. Realize filters by direct form I, II, Cascade and Parallel for	rm.
	6. Study DSP processors, Adaptive filters and their application	ons.

Syllabus same as that of subject ISC604 Digital Signal Processing

List of Laboratory Experiments:

Sr.	Detailed Contents	CO
No.		mapping
1	Generation of DT sinusoidal signal and verification of sampling theorem.	CO1
2	Finding the Impulse response of the system.	CO2
3	Program for finding linear convolution, Circular convolution, and linear	CO2
	convolution by using circular convolution technique.sequences.	
4	Program for finding correlation (auto and cross).	CO2
5	Computation of N point DFT of a given sequence and to plot magnitude and	CO3

University of Mumbai, Instrumentation Engineering, Rev 2016-17
6	Computing circular convolution by DFT and IDFT of signals.	CO3
7	Implementation of FFT algorithms (DIT, DIF) etc.	CO3
8	Designing of FIR filter using windowing technique.	CO4
9	Design and Implement IIR filter to meet given specifications.	CO4
10	Assignment on Filter Implementation direct form I, II, Cascade, Parallel	CO5
11	Study of Adaptive filters such as LMS, RLS and its applications.	CO6
12	Study of DSP processor and its applications.	CO6

Any other additional experiments based on syllabus which will help students to understand topic/concept.

Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum Eight experiments.The distribution of marks for term work shall be as follows:Laboratory work (Experiments): 10 MarksLaboratory work (programs /journal): 10 MarksAttendance: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject	Subject Name	Teaching scheme			Credit assigned			
code								
ISL605	Advanced	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Control System -	-	2	-	-	1	-	1
	Lab Practice							

Sub	Subject Name	Examination scheme							
Code						Term	Pract.	Oral	Total
		Internal Assessment End sem			End sem	work	and		
					Exam		Oral		
		Test1	Test2	Avg.					
ISL605	Advanced	-	-	-	-	25	25	-	50
	Control System -								
	Lab Practice								

Subject Code	Subject Name	credits					
ISL605	Advanced Control System- Lab Practice	1					
Course objectives	1. Students should be able to examine stability of limit cycle						
	2. The students should be able to examine stability of nonlinear system						
	using DF techniques and Lyapunov's functions						
	3. The students should be able to design the IMC structure.						
	4. The students should able to examine the stability using sliding	ng mode					
	control						
	5. Students can be able to optimize the any particular system.						
Course Outcomes	Students will be able to						
	1. Construct the phase-plane trajectories using Delta Method.						
	2. Classify stability of limit cycle as per obtained response of	the system					
	3. Derive DF for common nonlinearities and investigate system with limit cycle.	stability of					
	4. Determine Lyapunov's function and also able to investability of nonlinear system	estigate the					
	5. Design the IMC structure and apply same for stability anal	ysis.					
	6. Design IMC based PID controller.	-					

Syllabus same as that of subject ISC605 Advanced Control System

List of Laboratory Experiments:

Sr.	Detailed Contents	СО
No.		mapping
1	Construct the trajectory for system represented by second order	CO1
	differential equation and for any initial condition by using Delta Method.	
2	Study behaviour of limit cycle with the help of Vander Pol's equation.	CO2
3	Derivation of DF for nonlinearities – relay with saturation, relay with	CO3
	dead-zone, dead-zone and saturation etc.	
4	Investigate the stability of system with nonlinearities – relay, saturation,	CO3
	dead-zone and existence of limit cycle using DF technique.	
5	Verify Sylvester theorem for the definiteness of the Lyapunov Function.	CO4

University of Mumbai, Instrumentation Engineering, Rev 2016-17

6	Determine the stability of the system and construct the Lyapunov function	CO4
	for Linear Time invariant system	
7	By using Krasovskii method determine the stability of the system and	CO4
	construct the Lyapunov function.	
8	By using Variable Gradient method determine the stability of the	CO4
	nonlinear system	
9	Effect of filter tuning parameter on step response of the first and second	CO5
	order systems	
10	Design of IMC controller for a system subject to step input.	CO5
11	Design of IMC controller for a system subject to ramp input.	CO5
12	Design of IMC based PID controller.	CO6
13	Design of IMC controller for delay and non-minimum phase systems.	CO5

Any other additional experiments based on syllabus which will help students to understand topic/concept.

Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks

Laboratory work (programs /journal) : 10 Marks : 5 Marks

Attendance

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject	Subject	Teaching	g scheme		Credit assigned			
code	Name							
ISL606	Mini	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Project-II	-	2	-	-	1	-	1

Sub	Subject	Examination scheme								
Code	Name	Theory (out of 100)				Term	Pract	Oral	Total	
		Internal Assessment			End	work	. and			
		Test1	Test2	Avg.	sem		Oral			
				_	Exam					
ISL606	Mini Project-	-	-	-	-	25#	-	-	25	
	II									

Mini Project will be based on internal oral and project report.

Term Work:

The main intention of Mini Project is to make student enable to apply the knowledge and skills learned from the courses studied to solve/implement predefined challenging practical problems of interdisciplinary nature .The students undergo various laboratory/tutorial/simulation laboratory courses in which they do experimentation based on the curriculum requirement. The students should be encouraged to take challenging problems of interdisciplinary nature. The emphasis should be on

• Learning additional skills

• Development of ability to define and design the problem and lead to its accomplishment with proper planning.

• Learn the behavioral science by working in a group.

The group may be of maximum four (04) students. Each group will be assigned one faculty as a supervisor. The college should keep proper assessment record of progress of the project and at the end of the semester it should be assessed for awarding TW marks. The TW may be examined by approved internal faculty appointed by the head of the institute. The TW marks will be allocated based on the internal examination of demonstration in front of the examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the completed task.

The students may use this opportunity to learn different design techniques in instrumentation, control and electronics. This can be achieved by making a proper selection of Mini Project.